Ont come 1.1

1) a)

$$
\begin{aligned}
& \log _{4} 2+\log _{4} 8 \\
= & \log _{4} 16 \\
= & 2
\end{aligned}
$$

b)

$$
\begin{aligned}
& \log _{3} 108-\log _{3} 4 \\
= & \log _{3} 27 \\
= & 3
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \log _{3} 18-\log _{3} 2 \\
= & \log _{3} 9 \\
= & 2
\end{aligned}
$$

d) $\log _{5} 100-\log _{5} 4$
c) $\log _{4} 8+\log _{4} 8$
f)

$$
=\log _{4} 64
$$

$$
=3
$$

$$
\begin{aligned}
& 2 \log _{10} 2+2 \log _{10} 5 \\
= & \log _{10} 2^{2}+\log _{10} 5^{2} \\
= & \log _{10} 4+\log _{10} 25 \\
= & \log _{10} 100 \\
= & 2
\end{aligned}
$$

h)

$$
\begin{aligned}
& \log _{3} 9-\log _{3} \frac{1}{3} \\
& =\log _{3} 27 \\
& =3
\end{aligned}
$$

i)

$$
\begin{aligned}
& \frac{1}{2} \log _{2} 16-\frac{1}{3} \log _{2} 8 \\
= & \log _{2} 16^{1 / 2}-\log _{2} 8^{1 / 3} \\
= & \log _{2} 4-\log _{2} 2 \\
= & \log _{2} 2 \\
= & 1
\end{aligned}
$$

2)

$$
\text { a) } 1
$$

$\log _{4}(x+3)=2$

$$
x+3=4^{2}
$$

$$
x+3=16
$$

$$
x=13
$$

$\log _{2}$ い…

$$
\begin{aligned}
& x(x-3)=2^{2} \\
& x(x-3)=4 \\
& x^{2}-3 x-4=0 \\
& (x-4)(x+1)=0 \\
& x=4, x=-1
\end{aligned}
$$

$$
\begin{aligned}
\frac{6 x}{x-2} & =3^{2} \\
\frac{6 x}{x-2} & =9 \\
6 x & =9(x-2) \\
6 x & =9 x-18 \\
-3 x & =-18 \\
x & =6
\end{aligned}
$$

3)

$$
\begin{aligned}
& 2 \log _{m} n=\log _{m} 16+1 \quad \rightarrow \text { target } n \geq \geq \sqrt{m} \\
& \log _{m} n^{2}=\log _{m} 16+1 \\
& \log _{m} n^{2}-\log _{m} 16=1 \\
& \log _{m}\left(\frac{n^{2}}{16}\right)=1 \\
& \frac{n^{2}}{16}=m^{1} \\
& n^{2}=16 m \\
& n=\sqrt{16 m} \quad \text { as required. } \\
& n=4 \sqrt{m} \text { as } \\
&
\end{aligned}
$$

4) a) $M=M_{0} e^{-k t}$

$$
\begin{aligned}
8 & =10 e^{-k(5)} \\
0.8 & =e^{-5 k} \\
\log _{e} 0.8 & =\log _{e} e^{-5 k} \\
\log _{e} 0.8 & =-5 k \\
\log _{e} 0.8 & =k \\
k & =0.0446
\end{aligned}
$$

b)

$$
\begin{aligned}
5 & =10 e^{-0.0446 t} \\
0.5 & =e^{-0.0446 t} \\
\log _{e} 0.5 & =\log _{e} e^{-0.0446 t} \\
\log _{e} 0.5 & =-0.0446 t \\
\frac{\log _{e} 0.5}{-0.0446} & =t \\
t & =15.54 \text { years. }
\end{aligned}
$$

b)

$$
\begin{aligned}
1000 & =500 e^{0.0196 t} \\
2 & =e^{0.0196 t} \\
\log _{e} 2 & =\log _{e} e^{0.0196 t} \\
\log _{e} 2 & =0.0196 t \\
\frac{\log _{e} 2}{0.0196} & =t \\
t & =35.4 \text { hows }
\end{aligned}
$$

6) $+1=\log _{2} x$

$$
\begin{aligned}
& a=\log _{2} 8 \\
& a=3
\end{aligned}
$$

7)

$$
\begin{aligned}
& m=\frac{7-4}{6-0} \\
& m=\frac{3}{6} \\
& m=\frac{1}{2} \\
& c=4
\end{aligned}
$$

$$
y=\frac{1}{2} x+4
$$

$$
\text { se } \log _{2} y=\frac{1}{2} \log _{2} x+4
$$

$$
\begin{aligned}
& \log _{2} y=2 \log _{2} x^{1 / 2}+4 \\
& \log _{2} y \\
& \log _{2} x^{1 / 2}=4
\end{aligned}
$$

$$
\log _{2} y-\log _{2} x^{1 / 2}=4
$$

$$
\log _{2} \frac{y}{x^{1 / 2}}=4
$$

$$
\begin{aligned}
& \frac{y}{x^{1 / 2}}=24 \\
& y=16
\end{aligned}
$$

$$
\begin{aligned}
& x_{y}^{\prime y}=16 \\
& x^{1 / 2}=16 x^{1 / 2} \quad k=16, n=1 / 2 \\
& y=
\end{aligned}
$$

8)

$$
\begin{aligned}
& m=\frac{6-0}{0.2} \\
& m=\frac{6}{-2} \\
& m=-3 \\
& c=6
\end{aligned}
$$

$$
\text { so } \begin{aligned}
& y=-3 x \log _{2} y \\
&=-3 x+6 \\
& \log _{2} y=-3 x \log _{2} 2+6 \\
& \log _{2} y=\log _{2} 2^{-3 x}+6 \\
& \log _{2} y-\log _{2} 2^{-3 x}=6 \\
& \log _{2} \frac{y}{2^{-3 x}}=6 \\
& \frac{y}{2^{-3 x}}=2^{6} \\
& \frac{y}{2^{-3 x}}=64 \\
& y=64 \times 2^{-3 x} \quad \\
& y=64 \times \frac{1}{8}^{x} \quad a=64, b=\frac{1}{8}
\end{aligned}
$$

9) $P_{t}=p_{0} e^{-k t}$

$$
\text { a) } \begin{aligned}
1 & =2 e^{-k(25)} \\
0.5 & =e^{-25 k} \\
\log _{e} 0.5 & =\log e e^{-25 k} \\
\log _{e} 0.5 & =-25 k \\
\frac{\log _{e} 0.5}{-25} & =k \\
k & =0.0277
\end{aligned}
$$

b) Let intial value $=100$

$$
\begin{aligned}
& \text { et initial value }=100 \\
& \begin{aligned}
P_{t} & =100 e^{-0.0277(80)} \\
& =10.904
\end{aligned} \\
& \text { decrease }=100-10.904=89.096 \\
& \% \text { decrease }=\frac{89.096}{100} \times 100=89.096 \%
\end{aligned}
$$

nintcome 1.2

Outcome 1.2
1)

$\sin a=\frac{1}{\sqrt{2}} \quad \sin b=\frac{1}{\sqrt{10}}$
$\cos a=\frac{1}{\sqrt{2}} \quad \cos b=\frac{3}{\sqrt{10}}$

$$
\begin{aligned}
\sin (a+b) & =\sin a \cos b+\cos A \sin B \\
& =\frac{1}{\sqrt{2}} \times \frac{3}{\sqrt{10}}+\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{10}} \\
& =\frac{3}{\sqrt{20}}+\frac{1}{\sqrt{20}} \\
& =\frac{4}{\sqrt{20}} \\
& =\frac{4}{2 \sqrt{5}} \\
& =\frac{2}{\sqrt{5}} \text { as requited }
\end{aligned}
$$

2)

$\cos x=\frac{17}{\sqrt{330}} \quad \cos y=\frac{5}{\sqrt{106}}$
3)

$$
\begin{aligned}
l H S & =(3+2 \cos x)(3-2 \cos x) \\
& =9-6 \cos x+6 \cos x-4 \cos ^{2} x \\
& =-4 \cos ^{2} x+9 \\
& =-4\left(1-\sin ^{2} x\right)+9 \\
& =-4+4 \sin ^{2} x+9 \\
& \left.=4 \sin ^{2} x+5=x+4\right)
\end{aligned}
$$

4)

$$
\begin{aligned}
\text { LHS } & =3 \cos 2 x-4 \cos ^{2} x \\
& =3\left(1-2 \sin ^{2} x\right)-4\left(1-\sin ^{2} x\right) \\
& =3-6 \sin ^{2} 2 x-4+4 \sin ^{2} x \\
& =-1-2 \sin ^{2} x \\
& =\text { RHS }
\end{aligned}
$$

$$
\therefore \cos x-\sin x=\sqrt{2} \cos (x-315)^{\circ}
$$

7) a)

$$
\begin{aligned}
5 \cos x-12 \sin x & =k \sin (x-a) \\
& =k \sin x \cos
\end{aligned}
$$

$$
\begin{aligned}
& =k \sin (x-a) \\
& =k \sin x \cos a-h \cos \sin a
\end{aligned}
$$

$$
\begin{aligned}
& k \cos a=-12 \\
& -k \sin a=5 \\
& k \sin =-5 \\
& k=\sqrt{(-1)^{2}+(-5)^{2}} \\
& k=13
\end{aligned}
$$

$\frac{S^{5} \mid A}{(\sqrt{(T)} C r}$

$$
\begin{aligned}
\operatorname{tar} a & =\frac{\text { kina }}{\text { hasa } a} \\
& =\frac{-5}{-12} \\
\rightarrow a & =180+2.6 \\
& =202.6^{\circ}
\end{aligned}
$$

$\therefore 5 \cos x-12 \sin x=13 \sin (x-202.6)^{\circ}$
b) max value of $13 \sin (x-202 \cdot 6)^{\circ}=13$.
8) $\underbrace{4 \sin x+3 \cos x}_{\downarrow}=2.5 \quad 0 \leq x \leq 180$
write in wave equation form.

$$
\begin{aligned}
4 \sin x+3 \cos x & =k \cos (x-a) \\
& =k \cos x \cos 0
\end{aligned}
$$

$$
\begin{aligned}
& =k \cos (x-a) \\
& =k \cos x \cos a+k \sin x \sin a
\end{aligned}
$$

9) a) i)

$$
\begin{array}{cc}
3 x-2 y=0 \quad m=\tan \theta \\
2 y=3 x & \tan a=\frac{3}{2} \quad \\
y=\frac{3}{2} x \\
\therefore m=\frac{\text { vertical }}{2}
\end{array}
$$

ii) $\sin a=\frac{3}{\sqrt{13}} \quad \cos a=\frac{2}{\sqrt{13}}$

$$
\begin{aligned}
& k=5 \\
& \therefore 4 \sin x+3 \cos x=5 \cos (x-53 \cdot 1)^{\circ} \\
& \text { So } 5 \cos (x-53 \cdot 1)^{\circ}=2.5 \\
& \cos (x-55 \cdot 1)^{\circ}=0.5 \\
& x-53 \cdot 1=60^{\circ}, 300^{\circ} \\
& x=\underline{113.11^{\circ}, 353.1^{\circ}}
\end{aligned}
$$

ii) $\sin a=\frac{3}{\sqrt{13}} \quad \cos a=\frac{2}{\sqrt{13}}$
b)

$$
\begin{gathered}
3 x-l y=0 \\
4 y=3 x \\
y=\frac{3}{4} x \\
m=\frac{1}{4} \quad\left(\frac{v}{h}\right) \\
\sin b=\frac{3}{5} \quad \cos b=\frac{4}{5}
\end{gathered}
$$

di) $\sin (a-1)=$ sha cosh $-\cos s \sin b$

$$
\begin{aligned}
& =\frac{3}{\sqrt{13}} \times \frac{4}{5}-\frac{2}{\sqrt{13}} \times \frac{3}{5}
\end{aligned}
$$

$$
=\frac{12}{5 \sqrt{3}}-\frac{6}{5 \sqrt{3}}
$$

$5 \sqrt{13}$

$$
\text { ii) } \sin (b-2)=\frac{-6}{5 \sqrt{13}}
$$

Ontome 13

1) $y=3 \cos \left(x+\frac{\pi}{4}\right)$

2) a)

c)

3) a)

c)

b)

d)

4) a) $y=4 \cos x+2$
b) $y=4 \sin 2 x+3$
5) a) $y=\log _{2} x \quad$ b) () .

$$
\begin{aligned}
& a=\log _{2} 16 \\
& 2^{a}=16 \\
& 2^{a}=2^{4} \\
& a=4
\end{aligned}
$$

6)
7) $f(x)=2 x^{2} \quad g(x)=5 x-4$

$$
\text { b) } f(g(x))=f(5 x-l)
$$

$$
=2(5 x-c))^{2}
$$

a) $g(2)=5(2)-4=6$

$$
\begin{aligned}
f(y(1))=f(6) & =2(6)^{2} \\
& =2 \times 36 \\
& =72
\end{aligned}
$$

$$
=2(\operatorname{sic} \cdot(1)(5 x-(1)
$$

$$
=2\left(25 x^{2}-10 x+110\right.
$$

$$
=50 x^{2}-80 x+32
$$

8)

$$
\begin{aligned}
f(x(x)) & =f\left(x^{2}+3\right) \\
& =\left(x^{2}+3-1\right)\left(x^{2}+3+3\right) \\
& =\left(x^{2}+2\right)\left(x^{2}+0\right) \\
& =x^{4}+8 x^{2}+12
\end{aligned}
$$

$$
\begin{aligned}
g(g(x)) & =g\left(x^{2}+3\right) \\
& =\left(x^{2}+3\right)^{2}+3 \\
& =x^{4}+6 x^{2}+9+3 \\
& =x^{4}+6 x^{2}+12
\end{aligned}
$$

9) $f(x)=\frac{1}{x^{2}-4} \quad y(x)=x+1$
a)

$$
\begin{aligned}
h(x)=f(g(x)) & =f(x+1) \\
& =\frac{1}{(x+1)^{2}-4} \\
& =\frac{1}{x^{2}+2 x+1-4} \\
& =\frac{1}{x^{2}+2 x-3}
\end{aligned}
$$

b)

$$
\begin{aligned}
& x^{2}+2 x-3 \neq 0 \\
& (x+3)(x-1) \geq 0 \\
& x \neq-3, x \neq 1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
y=\log _{b}(x+a) \\
0): 0=\log _{b}(4+a)
\end{array} \\
& b^{0}=(4+a) \\
& \begin{array}{ll}
b^{0}=(4+a) & 4=\log _{b} \\
1=4+a & b^{4}=16
\end{array} \\
& a=-3 \\
& (1 a, 4) \quad y=\log _{b}(x-3) \\
& \begin{array}{l}
(4,0): 0=\log _{b}(b+a) \quad x, y \quad 4=\log _{b}(1 a-3) \\
x, y
\end{array} \\
& x y \\
& b=2 \text { since } b>0
\end{aligned}
$$

10) $f(x)=3 x-2 \quad g(x)=3 x+2$

11) a) $f(x)=4 x-5$
d) $\begin{aligned} f(1) & =\frac{2 x-5}{4} \\ y & =\frac{2 x-5}{4}\end{aligned}$
$y=\frac{2 x-5}{4}$
let $\begin{aligned} y & =4 x-5 \\ x & =4 y-5 \\ x+5 & =4 y \\ \frac{x+5}{4} & =y\end{aligned}$
so $f^{-1}(x)=\frac{x+5}{4}$
c) $\begin{aligned} f(x) & =\frac{2 x}{5}+4 \\ y & =\frac{2 x}{5}+4 \\ \text { ut } x & =\frac{2 y}{5}+4 \\ x-4 & =\frac{2 y}{5} \\ 5(x-4) & =2 y \\ \frac{5(x-4)}{2} & =y\end{aligned}$
b) $f(x)=\frac{x}{6}$
so $f^{-1}(x)=\frac{5(x-4)}{2}$
let $\begin{aligned} & x=\frac{2 y-5}{4} \\ & 4 x=2 y-5 \\ & 4 x+5=2 y \\ & \frac{4 x+5}{2}=y \\ & \text { so } f^{-1}(x)=\frac{4 x+5}{2}\end{aligned}$

$$
e)
$$

e) $f(x)=\frac{4 x+7}{2}$

$$
y=\frac{4^{2} x+7}{2}
$$

$$
\text { f) } f(x)=12-\frac{9}{4} x
$$

9) $f(x)=\frac{8-3 x}{13}$
h) $f(x)=\frac{-3 x+4}{-9}$
$y=12-\frac{3}{4} x$
$y=\frac{8-3 x}{13}$
$y=\frac{-3 x+4}{-9}$
let $x=\frac{4 y+7}{2}$

$$
\text { ut } x=12-\frac{3}{4} y
$$

let $x=\frac{8-3 y}{13}$
let $x=\frac{-3 y+4}{-9}$
$2 x=4 y+7$
$2 x-7=4 y$

$$
\begin{array}{ll}
x-12=-\frac{3}{4} y & 13 x=8-3 y \\
4(x-12)=-3 y & 13 x-8=-3 y \\
\frac{4(x-12)}{-3}=y & \frac{13 x-8}{-3}=y
\end{array}
$$

$$
\begin{gathered}
-9 \\
-9 x=-3 y+4 \\
-9 x-4=-3 y
\end{gathered}
$$

$\frac{2 x-7}{4}=y$
so $f^{-1}(x)=\frac{21-7}{4}$
so $f^{-1}(x)=\frac{4(x-12)}{-3}$
so $f^{-1}(x)=\frac{13 x-8}{-3}$

$$
\frac{-9 x-4}{-3}=y
$$

$\frac{9 x+4}{3}=y$
so $f^{-1}(x)=\frac{9 x+4}{3}$

Outcome 1.4

1) $\begin{aligned} & \overrightarrow{A B}=-2 \\ &=(4 \\ & 2\end{aligned}$

$$
\begin{aligned}
\dot{B} & =\underline{b}-a \\
& =\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{c}
3 \\
-2 \\
2
\end{array}\right)
$$

2) $Q=\frac{3}{8} R+\frac{5}{8} p$

$$
\begin{aligned}
8 Q & =3 R+5 p \\
8 Q & =3\left(\begin{array}{l}
10 \\
41 \\
-6
\end{array}\right)+5\left(\begin{array}{l}
2 \\
18 \\
18
\end{array}\right) \\
& =\left(\begin{array}{l}
30 \\
123 \\
-18
\end{array}\right)+\left(\begin{array}{c}
10 \\
5 \\
90
\end{array}\right) \\
& =\left(\begin{array}{c}
40 \\
128 \\
72
\end{array}\right)
\end{aligned}
$$

$$
a=\left(\begin{array}{c}
5 \\
16 \\
9
\end{array}\right) \quad \text { so } Q(5,16,9)
$$

3) $\overrightarrow{A B}=\underline{b}-=$

$$
\overrightarrow{B C}=\underline{c}-\underline{b}
$$

$$
=\left(\begin{array}{c}
7 \\
-6 \\
9
\end{array}\right)-\left(\begin{array}{c}
0 \\
-3 \\
5
\end{array}\right)
$$

B is a comma point, so points are collinear.
$\overrightarrow{A B}: \overrightarrow{B C}$
$=\left(\begin{array}{c}7 \\ -3 \\ 4\end{array}\right) \quad=\left(\begin{array}{c}14 \\ -6 \\ 8\end{array}\right)=2\left(\begin{array}{c}7 \\ -3 \\ 4\end{array}\right)=\overrightarrow{2 A B}$
$1: 2$

$$
\begin{aligned}
& \overrightarrow{B C}=\underline{c}-\underline{b}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \alpha \overrightarrow{B C}=3 \overrightarrow{A D} \text {, the distance between } B C \text { is } 3 \text { tmeses } \\
& =\left(\begin{array}{c}
9 \\
-6 \\
6
\end{array}\right) \\
& \text { AB. } \therefore \text { condition } 2 \text { is met. } \\
& =3\left(\begin{array}{c}
3 \\
-2 \\
2
\end{array}\right)=\overrightarrow{3 A B} \\
& \therefore \text { The this meta both cndihus. }
\end{aligned}
$$

$=\left(\begin{array}{c}7 \\ -3 \\ 4\end{array}\right) \quad=\left(\begin{array}{c}14 \\ -6 \\ 8\end{array}\right)=2\left(\begin{array}{c}7 \\ -3 \\ 4\end{array}\right)=2 \overrightarrow{A D} \quad 1: 2$
4) $\underline{u}=\left(\begin{array}{c}2 \\ -2 \\ 4\end{array}\right) \underline{v}=\left(\begin{array}{l}1 \\ a \\ \sqrt{7}\end{array}\right)$

5) $\overrightarrow{B A}=a-b$
$\overrightarrow{B C}=\leq-\underline{b}$
$\overrightarrow{B A} \cdot \overrightarrow{B C}=3 \times(1+1 \times(-6)+(-2) \times 3$
$\begin{aligned}=\left(\begin{array}{c}6 \\ -1 \\ 9\end{array}\right)-\left(\begin{array}{c}3 \\ -2 \\ 11\end{array}\right) & =\left(\begin{array}{c}7 \\ -8 \\ 14\end{array}\right)-\left(\begin{array}{c}3 \\ -2 \\ 11\end{array}\right) \\ & =(4\end{aligned}$
$=12+(-6)+(-6)$
since $\vec{B} A \cdot \overrightarrow{B C}=0$, triangle is right angled at B.
$=\left(\begin{array}{l}3 \\ 1 \\ -2\end{array}\right)$
$=\left(\begin{array}{c}4 \\ -6 \\ 3\end{array}\right)$
6) a) $\begin{aligned} \vec{R} S & =s \cdot r_{-} & \vec{R} \vec{k} & =\underline{t}-\underline{r} \\ & =\binom{1}{0} & & =\binom{6}{1}\binom{0}{4}\end{aligned}$

$$
=\left(\begin{array}{l}
1 \\
5 \\
2
\end{array}\right)-\left(\begin{array}{c}
0 \\
4 \\
-1
\end{array}\right) \quad=\left(\begin{array}{c}
6 \\
1 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
4 \\
-1
\end{array}\right) \quad \begin{aligned}
& \text { c) since } \overrightarrow{k s} \cdot \overrightarrow{R^{2}}=0, \text { vectors are perpendicular. } \\
& =0
\end{aligned}
$$

$$
=\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right) \quad=\left(\begin{array}{c}
6 \\
-3 \\
-1
\end{array}\right)
$$

7) $\begin{array}{rlrl}\overrightarrow{A S}=5-a & \overrightarrow{A T}=t \cdot a & \text { b) } \overrightarrow{A S} \cdot \overrightarrow{A T} & =4 \times 3+2 \times(3)+3 \times 4 \\ & =12+(-6)+12\end{array}$
$\begin{array}{llc}=\left(\begin{array}{l}5 \\ 5 \\ 2\end{array}\right)-\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right) & =\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right)-\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right) & =18 \\ =\left(\begin{array}{l}4 \\ 2 \\ 3\end{array}\right) & =\left(\begin{array}{c}3 \\ -3 \\ 4\end{array}\right) & |\overrightarrow{A T}|=\sqrt{3^{2}+2^{2}+3^{2}}=\sqrt{29} \\ \end{array}$

$$
\cos \theta=\frac{\vec{A} S \cdot \overrightarrow{A T}}{|\overrightarrow{n s}||\overrightarrow{A T}|}
$$

$$
\begin{aligned}
& =\frac{18}{\sqrt{29} \sqrt{34}} \\
& =0.573 \\
& =55.0^{\circ}
\end{aligned}
$$

8) a) $C(11,12,6) \quad D(8,8,4)$
b) $\overrightarrow{C B}=\underline{b}-\underline{c}$

$$
\overrightarrow{C D}=\underline{d}-\underline{c}
$$

c) $\overrightarrow{C B} \cdot \overrightarrow{C D}=0 \times(-3)+(-8) \times(-4)+(-4) \times(-1)$

$$
=\left(\begin{array}{l}
11 \\
4 \\
2
\end{array}\right)-\left(\begin{array}{c}
11 \\
12 \\
6
\end{array}\right)
$$

$$
=\left(\begin{array}{l}
8 \\
8 \\
4
\end{array}\right)-\left(\begin{array}{l}
11 \\
12 \\
6
\end{array}\right)
$$

$$
\begin{aligned}
|\overrightarrow{C B}|: \sqrt{0^{2}+(-8)^{2}+(-4)^{2}} & =\sqrt{80}
\end{aligned}
$$

$$
=\left(\begin{array}{c}
0 \\
-8 \\
-4
\end{array}\right)
$$

$=\left(\begin{array}{l}-3 \\ -4 \\ -2\end{array}\right)$
$|\vec{C}|=\sqrt{(-3)^{2}+(-a)^{2}+(-2)^{2}}=\sqrt{29}$
$\cos \theta=\frac{\overrightarrow{C B} \cdot \overrightarrow{C D}}{|\overrightarrow{C B}||\overrightarrow{C D}|}$

$$
=\frac{40}{\sqrt{80} \sqrt{29}}
$$

$$
\begin{aligned}
& =0.830 \\
\theta & =33.9^{\circ}
\end{aligned}
$$

9) uni) $\overrightarrow{A T}= \pm-$

$$
\begin{aligned}
\overrightarrow{T B} & =\underline{b}-t \\
& =\left(\begin{array}{c}
18 \\
17 \\
11
\end{array}\right)-\left(\begin{array}{l}
3 \\
2 \\
5
\end{array}\right)
\end{aligned}
$$

ii) $\overrightarrow{A T}: \overrightarrow{T B}$
$=\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)-\left(\begin{array}{c}-7 \\ -8 \\ 1\end{array}\right)$
$=\left(\begin{array}{c}10 \\ 10 \\ 4\end{array}\right)$
$=\left(\begin{array}{c}15 \\ 15 \\ 6\end{array}\right)$
$=2\left(\begin{array}{l}5 \\ 5 \\ 2\end{array}\right)=3\left(\begin{array}{l}5 \\ 5 \\ 2\end{array}\right)$
$=2\left(\begin{array}{l}5 \\ 5 \\ 2\end{array}\right)=3\left(\begin{array}{l}5 \\ 5 \\ 2\end{array}\right)$
b) $\begin{array}{rlrl}\overrightarrow{T B}=\left(\begin{array}{c}15 \\ 15 \\ 6\end{array}\right) & & \begin{array}{rlrl}C(x, 0,0) & \text { since on } x \text {-axis. } \\ \overrightarrow{T C} & =\leq-\underline{E} & \overrightarrow{T B} \cdot \vec{T} & =0 \text { for perpendicular vectors } \\ & =(x)\left(\begin{array}{l}3 \\ 0\end{array}\right. & & \overrightarrow{T B} \cdot \overrightarrow{T C}\end{array}=15(x-3)+15 \times(-2)+6 \times(-5) \\ & =5 x-45+(-30)+(-30)\end{array}$

$$
\begin{aligned}
& =\left(\begin{array}{l}
x \\
0 \\
0
\end{array}\right)-\left(\begin{array}{l}
3 \\
2 \\
5
\end{array}\right. \\
& =\left(\begin{array}{l}
x-3 \\
-2 \\
-5
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =15(x-3) 15 x-(-30)+(-30) \\
& =5 x-45+105 \\
& =5 x-105
\end{aligned}
$$

$$
=5 x-105
$$

$$
\text { so } \begin{gathered}
5 x-105=0 \\
5 x=105 \\
x: 21
\end{gathered}
$$

$\therefore C(21,0,0)$
10) a) i) $\vec{B} A=9 \cdot b$
$\overrightarrow{B C}=\underline{-b}$

$$
\begin{array}{ll}
=\left(\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right)-\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right) & =\left(\begin{array}{c}
4 \\
k \\
0
\end{array}\right)-\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right) \\
=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) & =\left(\begin{array}{c}
2 \\
k+3 \\
-1
\end{array}\right)
\end{array}
$$

$|\overrightarrow{B A}|=\sqrt{1^{2}+b^{2}+(-1)^{2}}=\sqrt{2}$
$|\overrightarrow{B C}|=\sqrt{2^{2}+(x+3)^{2}+(-1)^{2}}$

$$
\begin{aligned}
& =\sqrt{4+k^{2}+6 k+9+1} \\
& =\sqrt{k^{2}+6 k+14}
\end{aligned}
$$

$$
\cos \theta=\frac{\overrightarrow{B A} \cdot \overrightarrow{B C}}{|\overrightarrow{B A}||\overrightarrow{B C}|}
$$

$$
=\frac{3}{\sqrt{2} \sqrt{k^{2}+6 k+14}}
$$

b) if $\theta=30^{\circ}$, then

$$
=\frac{3}{\sqrt{2\left(k^{2}+6 k+k^{2}\right)}}
$$

$$
\cos 30^{\circ}=\frac{3}{\sqrt{2\left(k^{2}+6 k+14\right)}}
$$

$$
\frac{\sqrt{3}}{2}=\frac{3}{\sqrt{2\left(x^{2}+6\right)+14}}
$$

$$
\begin{aligned}
& \sqrt{3} \sqrt{2\left(k^{2}+6 k+4\right)}=6 \\
& \sqrt{6\left(k^{2}+6 k+14\right)}=6 \\
& 6\left(k^{2}+6 k+4\right)=36 \\
& k^{2}+6 k+14=6 \\
& k^{2}+6 k+8=0 \\
&(k+4)(k+2)=0 \\
& k=-4, \quad k=-2
\end{aligned}
$$

$\begin{array}{llll}\text { 11) a) } \overrightarrow{D C}=\underline{u} & \text { b) } \overrightarrow{H C}=-\underline{w} & \text { c) } \overrightarrow{A C}=\underline{u}+\underline{v} & \text { d) } \overrightarrow{F D}=\underline{v}-\underline{w} \\ \text { e) } \vec{F}=-\underline{u}-\underline{v}+\underline{w}\end{array}$

$$
\begin{aligned}
& \text { 12) } \begin{aligned}
& \frac{c_{i r c l e l}}{} \\
& C_{1}(-2,-4) \quad r=10 \\
& \frac{C_{i r d e} 2}{C_{1}(10,5)} r=\sqrt{(-10)^{2}+(5)^{2}-100} \\
& r=\sqrt{25} \\
& r=5
\end{aligned}
\end{aligned}
$$

$p=\frac{2}{3} c_{2}+\frac{1}{3} c_{1}$
$3 p=2 c_{2}+c_{1}$
$3 r=2\binom{10}{5}+\binom{-2}{-4}$
$3 p=\binom{20}{10}+\binom{-2}{-4}$
$3 P=\binom{18}{6}$

$$
p=\binom{6}{2} \quad p(6,2)
$$

