N5 RELATIONSHIPS 1.4

This resource is to support pupils in passing the appropriate National 5 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and *may* include other areas from the course.

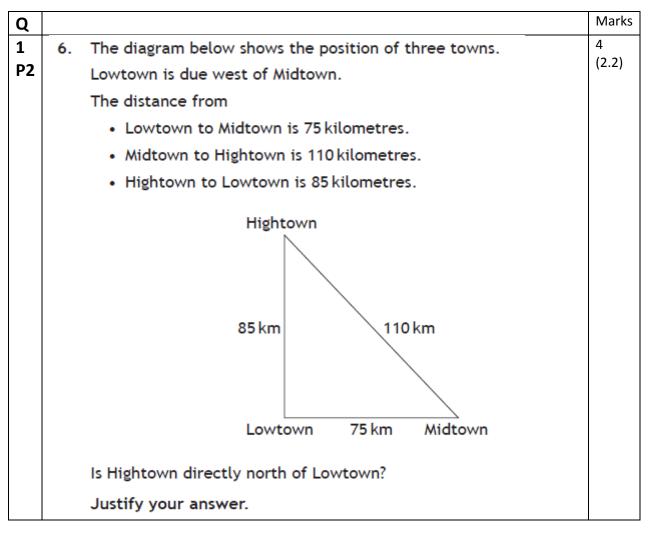
In addition the questions from **Paper 1 (P1)** should be completed **without** the use of a calculator and questions from **Paper 2 (P2)** permit the use of a calculator.

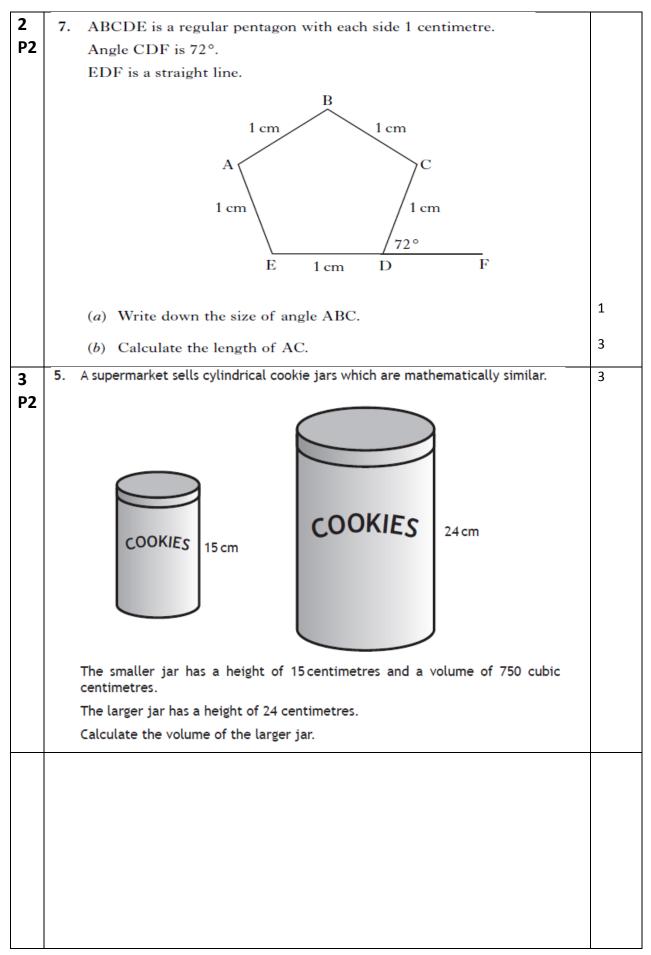
Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 5 course. As such each Assessment Standard will test grade C work on that specific topic.

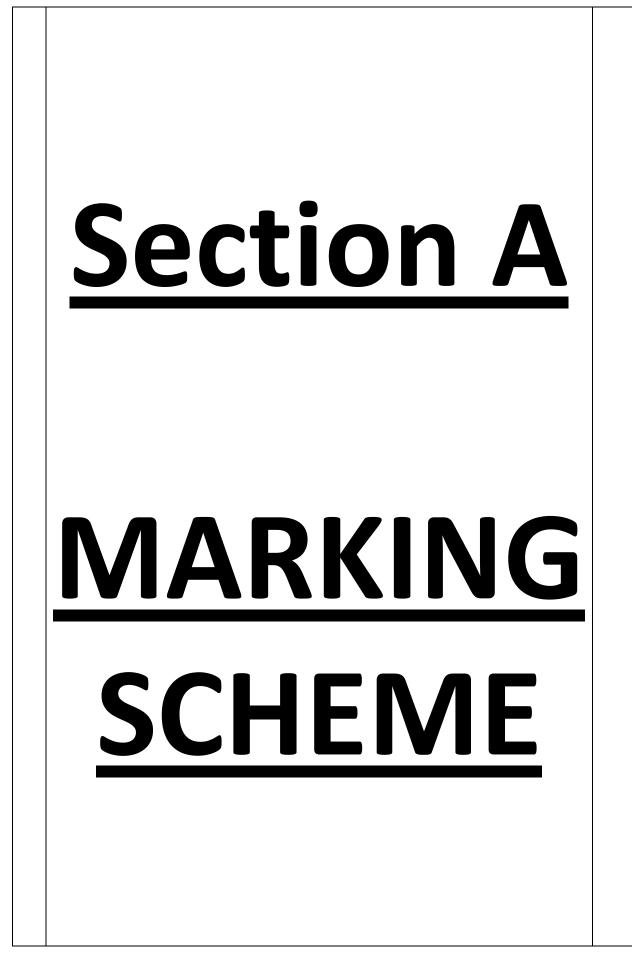
This resource is divided into two sections:

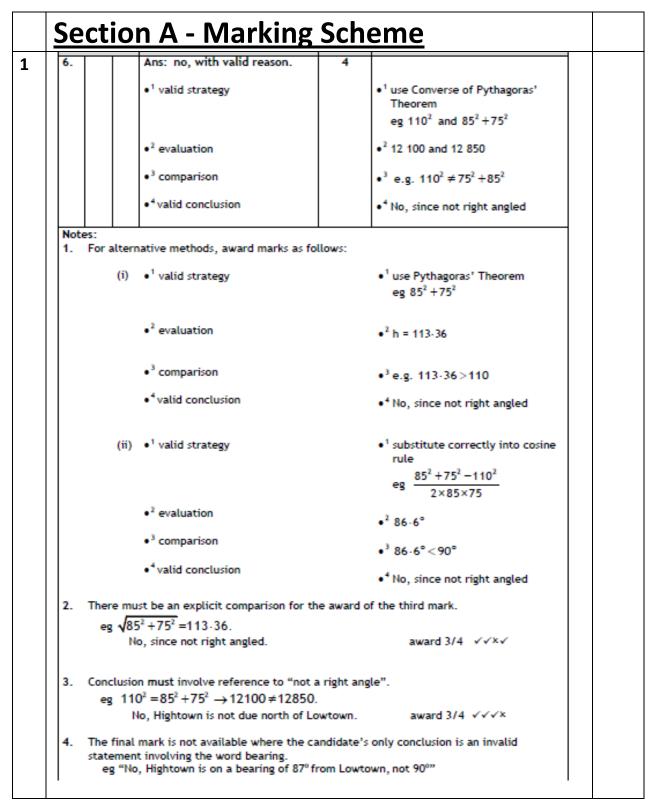
- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment Standard	<u>Sub skills</u>	Section A – Question Number
Relationships 1.4	applying the converse of Pythagoras' theorem	Q1
Applying geometric skills to lengths, angles and	applying the properties of shapes to determine an angle involving at least two steps	Q2
similarity	using similarity to calculate a volume	Q3


FORMULAE LIST


The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

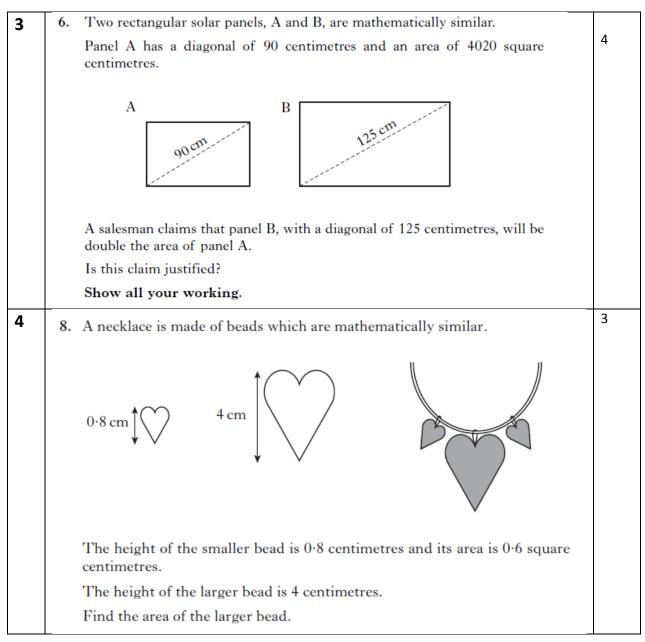

Sine rule:	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
Cosine rule:	$a^{2} = b^{2} + c^{2} - 2bc\cos A \text{ or } \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$
Area of a triangle:	$A = \frac{1}{2}ab\sin C$
Volume of a sphere:	$V = \frac{4}{3}\pi r^3$
Volume of a cone:	$V = \frac{1}{3}\pi r^2 h$
Volume of a pyramid:	$V = \frac{1}{3}Ah$
Standard deviation:	$s = \sqrt{\frac{\Sigma(x-\overline{x})^2}{n-1}} = \sqrt{\frac{\Sigma x^2 - (\Sigma x)^2/n}{n-1}}$, where <i>n</i> is the sample size.

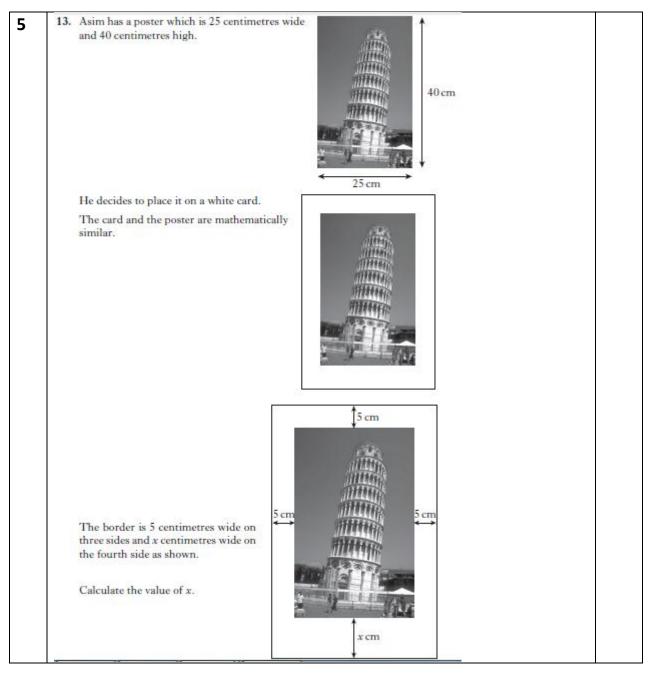

Section A

Section A

2	7 (a)	Ans: 108° • solution	•	108° 1KU
	(b)	Ans: 1.62 cm • strategy • substitution/processing • solution		use of appropriate trigonometry correct application of valid strategy 1.62
	NOTES:			3KU
	 (i) chosen triangle must lead to calculation of AC eg use △ CDE → CE → AC (ii) use of invalid triangle (eg angle sum ≠ 180°) award 0/3 (iii) accept solutions in radians or gradians 			award 0/3
	(iv) evidence for $\angle ABC=108^{\circ}$ may appear in part(b) (v) part(a) part(b) angle = x° angle = x° max 3/3			
		$angle = 90^{\circ}$ as $angle = x^{\circ}$ as	ingle = 90° ingle = y° ingle = 90°	max 2/3

Que	estion	Expected Answer(s)	Max	Illustrations of evidence for		
		Give one mark for each •	Mark	awarding a mark at each •		
5.		Ans: 3072 cm ³	3			
		• ¹ state linear scale factor		• $\frac{1}{15}$ or 1.6		
		• ² state volume scale factor		• $^{2}\left(\frac{24}{15}\right)^{3}$ or 1.6 ³ (= 4.096)		
		 ³ calculate volume (calculation must involve a power of the scale factor) and state correct units 		• ³ 3072cm ³		
Not	es:					
1.		nmon answers				
	(a) 307		12/3 √√			
	(b) 1920 cm ³ ($\left(\frac{24}{15}\right)^2 \times 750$) award 2/3 $\checkmark \times \checkmark$					
	(c)1200cm ³ ($\binom{24}{15}$ × 750) award 1/3 \checkmark ××					
	(d)675	000000cm ³ ($\left(\frac{24}{15}\right) \times 750^3$) award	1/3 √×:	×		
	(e)183	cm ³ ($\left(\frac{15}{24}\right)^3 \times 750$) award	12/3 ×√	/		
	(f) 933	cm ³ ($\left(\frac{15}{24}\right)^3 \times 750 + 750$) award	12/3 ×√	~		
2.	The third eg 4·1	mark is not available where prem × 750 = 3075cm ³ award 2	ature round 2/3 √√×	ding leads to an incorrect answer.		
3.	Alternat	tive Method				
	•1 knov	w how to find radius of smaller cyli	inder	• $1 \sqrt{\frac{750}{15\pi}}$		
	• ² knov	w how to find radius of larger cylin	der	$\bullet^2 \left(\frac{24}{15}\right) \times \sqrt{\frac{750}{15\pi}}$		
	• ³ calc	ulate volume and state correct ur	nits	• ³ 3072cm ³		


Section B


Section B

No Paper 1 Questions

Paper 2 Questions

Q			Mark
1	4.	Two fridge magnets are mathematically similar. One magnet is 4 centimetres long and the other is 10 centimetres long. $\begin{array}{c} & & \\ \hline \\ \hline$	s 3 (2.1) (2.2)
2	7.	Shampoo is available in travel size and salon size bottles. The bottles are mathematically similar. $\overrightarrow{h \ bottles} = \underbrace{f_{12} \ cm}_{travel} \qquad \underbrace{f_{12} \ cm}_{travel} \qquad \underbrace{f_{12} \ cm}_{salon} \qquad $	3 (2.1) (2.2)

Section B

MARKING SCHEME

15

Section B – Marking Scheme

Marking Scheme

Paper 1

Q		Marks
	No questions	

Paper 2

Q				Marks
1	4	Ans: 112.5 cm ²		
		linear scale factor	• $\frac{10}{4}$ or $\frac{4}{10}$	
		area scale factor	• $\left(\frac{5}{2}\right)^2$ or $\left(\frac{2}{5}\right)^2$	
		• solution	• 112.5 3KU	
	NOTES:			
	(i)	for 112.5 with or without working	award 3/3	
	(ii)	for 45 with or without working	award 1/3	
2	7	Ans: 24 cm		
		volume scale factor	8 or equivalent	
		linear scale factor	• $\sqrt[3]{8}$	
		calculating height	• 24 3KU	
	NOTES:			
	(i) f	or 96 with or without working	award 2/3	

3 6 Ans: no, plus justification • linear scale factor • area scale factor • multiplying by area scale factor • communication NOTES: () for using a linear factor throughout, only the 1 st and 4 th marks are available $eg \frac{125}{90} \times 4020 = 5583$ No, as $5583 \neq 8040$ award 2/4 (i) Alternative strategy • linear scale factor $\frac{125}{90}$ • area scale factor $(\frac{125}{90})^2$	
• area scale factor• $\left(\frac{125}{90}\right)^2$ • multiplying by area scale factor• $\left(\frac{125}{90}\right)^2$ • communication• $r754.6$ • no, as $7754.6 \neq 8040$ (8040 mmst be explicit) ARE NOTES:(i) for using a linear factor throughout, only the 1 st and 4 th marks are available eg $\frac{125}{90} \times 4020 = 5583$ No, as $5583 \neq 8040$ award 2/4(ii) Alternative strategy • linear scale factor $\frac{125}{90}$	
• multiplying by area scale factor • communication• 7754.6 • no, as 7754.6 \neq 8040 (8040 must be explicit)NOTES:4RE(i) for using a linear factor throughout, only the 1 st and 4 th marks are available $eg \frac{125}{90} \times 4020 = 5583$ No, as 5583 \neq 8040 (ii) Alternative strategy • linear scale factoraward 2/4	
• communication • no, as 7754-6 \neq 8040 (8040 must be explicit) 4RE NOTES: (i) for using a linear factor throughout, only the 1 ^u and 4 th marks are available $eg \frac{125}{90} \times 4020 = 5583$ No, as 5583 \neq 8040 award 2/4 (ii) Alternative strategy • linear scale factor $\frac{125}{90}$	
(8040 must be explicit) 4RE NOTES: (i) for using a linear factor throughout, only the 1 st and 4 th marks are available $eg \frac{125}{90} \times 4020 = 5583$ No, as $5583 \neq 8040$ award 2/4 (ii) Alternative strategy • linear scale factor $\frac{125}{90}$	
NOTES: (i) for using a linear factor throughout, only the 1 st and 4 th marks are available eg $\frac{125}{90} \times 4020 = 5583$ No, as $5583 \neq 8040$ award 2/4 (ii) Alternative strategy • linear scale factor $\frac{125}{90}$	
(i) for using a linear factor throughout, only the 1 st and 4 th marks are available eg $\frac{125}{90} \times 4020 = 5583$ No, as $5583 \neq 8040$ award 2/4 (ii) Alternative strategy • linear scale factor $\frac{125}{90}$	
eg $\frac{125}{90} \times 4020 = 5583$ No, as $5583 \neq 8040$ award 2/4 (ii) Alternative strategy • linear scale factor $\frac{125}{90}$	
No, as $5583 \neq 8040$ award 2/4 (ii) Alternative strategy • linear scale factor $\frac{125}{90}$	
(ii) Alternative strategy • linear scale factor $\frac{125}{90}$	
• linear scale factor $\frac{125}{90}$	
• area scale factor $\left(\frac{125}{90}\right)^2$	
evaluate area scale factor 1-929	
• communication No, as $1.929 \neq 2$ (2 must be explicit)	
4 8 Ans: 15 cm ²	
• linear scale factor • $\frac{4}{0 \cdot 8}$	
• area scale factor $\left(\frac{4}{0\cdot 8}\right)^2 = 25$	
solution 15 3KU	
NOTES:	
(i) for a final answer of 3 $\left(\frac{4}{0 \cdot 8} \times 0 \cdot 6\right)$ award 1/3	

5	13	Ans: x = 11	4		
		Method 1			25
		• ¹ strategy		•1	scale factor $=\frac{35}{25}$
		• ² applying scale factor		• ²	$\left(\frac{7}{5}\right) \times 40$
		 ³ processing 		•3	56
		• ⁴ solution		•4	11
		Ans: x = 11			
		Method 2			25 25
		● ¹ strategy		•1	$\frac{25}{40}$ or $\frac{35}{45+x}$
		• ² equating ratios		•2	$\frac{25}{40} = \frac{35}{45+x}$
		• ³ cross multiplication		•3	$25(45 + x) = 35 \times 40$
		• ⁴ solution		•4	11
			(RE)		