N5 RELATIONSHIPS 1.3

This resource is to support pupils in passing the appropriate National 5 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course.

In addition the questions from Paper 1 (P1) should be completed without the use of a calculator and questions from Paper $2(\mathbf{P} 2)$ permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 5 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment	Sub skills	Section A - Question Number		
Relationships 1.3	solving a quadratic equation which has been factorised	Q1		
Applying algebraic skills to quadratic equations	solving a quadratic equation using the quadratic formula	Q2		
using the discriminant to				
determine the number of roots			\quad Q3	
:---				

FORMULAE LIST

The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A \text { or } \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Area of a triangle:
$A=\frac{1}{2} a b \sin C$

Volume of a sphere: $V=\frac{4}{3} \pi r^{3}$

Volume of a cone:

$$
V=\frac{1}{3} \pi r^{2} h
$$

Volume of a pyramid:

$$
V=\frac{1}{3} A h
$$

Standard deviation: $s=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\Sigma x^{2}-(\Sigma x)^{2} / n}{n-1}}$, where n is the sample size.

Section A

Section A

Q		Marks
$\begin{aligned} & \hline 1 \\ & \text { P1 } \end{aligned}$	Solve the equation: $(x+3)(x-2)=0$	1
$\begin{aligned} & \mathbf{2} \\ & \text { P1 } \end{aligned}$	2. Solve the equation $3 x^{2}-2 x-10=0 .$ Give your answer correct to 2 significant figures.	4
$\begin{aligned} & 3 \\ & \text { P1 } \end{aligned}$	Determine the nature of the roots of the equation $x^{2}-9 x+8=0$ using the discriminant.	3

Section A

Marking

Section B

Section B

Paper 1 Questions

Q		Marks
1	7. Given $2 x^{2}-2 x-1=0$, show that $x=\frac{1 \pm \sqrt{3}}{2}$	4
2	4. Two functions are given below. $\begin{aligned} & f(x)=x^{2}-4 x \\ & g(x)=2 x+7 \end{aligned}$ (a) If $f(x)=g(x)$, show that $x^{2}-6 x-7=0$. (b) Hence find algebraically the values of x for which $f(x)=g(x)$.	$\begin{aligned} & 2 \\ & 2 \end{aligned}$

Q		Marks
3	3. Solve the quadratic equation $x^{2}-4 x-6=0$. Give your answers correct to 1 decimal place.	4
4	10. The weight, W kilograms, of a giraffe is related to its age, M months, by the formula $W=\frac{1}{4}\left(M^{2}-4 M+272\right) .$ At what age will a giraffe weigh 83 kilograms?	$\begin{aligned} & \hline 4 \\ & (2.1) \\ & (2.2) \end{aligned}$
5	4. Use the quadratic formula to solve the equation, $3 x^{2}+5 x-7=0$ Give your answers correct to 1 decimal place.	4
6	12. A right-angled triangle has dimensions, in centimetres, as shown. Calculate the value of x.	$\begin{aligned} & 5 \\ & (2.1) \end{aligned}$
7	3. Solve the equation $2 x^{2}+3 x-7=0 .$ Give your answers correct to 2 significant figures.	4

8	13. The diagram shows the path of a flare after it is fired.

The height, h metres above sea level, of the flare is given by
$h=48+8 t-t^{2}$ where t is the number of seconds after firing.

Calculate, algebraically, the time taken for the flare to enter the sea.
9 13. Triangles PQR and STU are mathematically similar.
The scale factor is 3 and PR corresponds to SU.

(a) Show that $x^{2}-6 x+5=0$.
(b) Given QR is the shortest side of triangle PQR , find the value of x.
2. Solve the equation

$$
2 x^{2}+7 x-3=0
$$

Give your answers correct to 1 decimal place.

Section B - Marking Scheme

Marking Scheme

Paper 1

Paper 2

N5 - REL 1.3 - Remediation

5		NOTES alt (i) (ii)	Ans: $\quad \mathbf{- 2 . 6}, 0.9$ - method - processing - solution - rounding native evidence for $3^{\text {rd }}$ and $4^{\text {th }}$ marks $3^{\text {rd }}$ mark (one solution and rounding) $4^{\text {th }}$ mark (another solution and rounding) only the first mark is available for candid	- substitution into quadratic formula - $\sqrt{109}$ - $-2 \cdot 573,0 \cdot 907$ - $-2 \cdot 6,0 \cdot 9$ $\begin{aligned} -2.573 & \rightarrow & -2.6 \\ 0.907 & \rightarrow & 0.9 \end{aligned}$ ho process to a negative discriminant
6			Ans: $x=5$ - valid strategy - starting to solve - quadratic equation - factorising - solution For the third mark to be awarded the f	- $(x+8)^{2}=x^{2}+(x+7)^{2}$ - $x^{2}+16 x+64=2 x^{2}+14 x+49$ - $x^{2}-2 x-15=0$ - $(x-5)(x+3)$ - $x=5$ t be $a x^{2}+b c+c=0$

N5 - REL 1.3 - Remediation

