N5 RELATIONSHIPS 1.2

This resource is to support pupils in passing the appropriate National 5 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course.

In addition the questions from Paper 1 (P1) should be completed without the use of a calculator and questions from Paper 2 (P2) permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 5 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment Standard	Sub skills	Section A - Question Number
Relationships 1.2	recognise and determine the equation of a quadratic function from its graph	$\text { Q1 }\left(y=k x^{2}\right)$
Applying algebraic skills to graphs of quadratic relationships	sketching a quadratic function identifying features of a quadratic function	Q2 Q3 (n shape) Q4 (u shape) $\text { Q5 }\left(y=(x+a)^{2}+b\right)$

FORMULAE LIST

The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A \text { or } \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Area of a triangle:
$A=\frac{1}{2} a b \sin C$

Volume of a sphere: $V=\frac{4}{3} \pi r^{3}$

Volume of a cone:

$$
V=\frac{1}{3} \pi r^{2} h
$$

Volume of a pyramid:

$$
V=\frac{1}{3} A h
$$

Standard deviation: $s=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\Sigma x^{2}-(\Sigma x)^{2} / n}{n-1}}$, where n is the sample size.

Section A

Section A

| Q | | Marks |
| :--- | :--- | :--- | :--- |
| $\mathbf{P 1}$ | 7. The diagram below shows part of the graph of $y=a x^{2}$ | 2 |

$\begin{array}{\|l\|} \hline \mathbf{P} \\ \hline \end{array}$	8. The curved part of the letter A in the Artwork logo is in the shape of a parabola. The equation of this parabola is $y=(x-8)(2-x)$. (a) Write down the coordinates of Q and R . (b) Calculate the height, h, of the letter A.	2 3
$\begin{array}{\|l\|} \hline \mathbf{4} \\ \hline \end{array}$	10. The parabola with equation $y=x^{2}-2 x-3$ cuts the x-axis at the points A and B as shown in the diagram. (a) Find the coordinates of A and B. (b) Write down the equation of the axis of symmetry of $y=x^{2}-2 x-3$.	
$\begin{array}{\|l\|} \hline 5 \\ \text { P1 } \\ \hline \end{array}$	A parabola has equation $y=(x-2)^{2}-10$. (a) Write down the equation of its axis of symmetry. (b) Write down the coordinates of the turning point on the parabola and state whether it is a maximum or minimum.	3

	Section A - Marking Scheme	
1		
2	$\bullet 1$ identify and annotate roots and $y-$ intercept $\bullet 1$ 5 and -3 $(0,-15)$ $\bullet 2$ identify and annotate turning point $\bullet 2$ $(-1,-16)$	
3		

Section B

Section B

Paper 1 Questions

Q		Marks
1	10. The diagram below shows the path of a rocket which is fired into the air. The height, h metres, of the rocket after t seconds is given by $h(t)=-2 t(t-14)$ (a) For how many seconds is the rocket in flight? (b) What is the maximum height reached by the rocket?	$\begin{aligned} & 2 \\ & (2.1) \\ & (2.2) \\ & 2 \\ & (2.1) \\ & (2.2) \end{aligned}$

2 6. The diagram shows part of the graph of $y=5+4 x-x^{2}$.
A is the point $(-1,0)$.
B is the point $(5,0)$.
(a) State the equation of the axis of symmetry of the graph.
(b) Hence, find the maximum value of $y=5+4 x-x^{2}$.

3 13. The diagram below shows the path of a small rocket which is fired into the air. The height, h metres, of the rocket after t seconds is given by

$$
h(t)=16 t-t^{2}
$$

(a) After how many seconds will the rocket first be at a height of 60 metres?
(b) Will the rocket reach a height of 70 metres?

Justify your answer.

Paper 2 Questions

| Q | 13.The profit made by a publishing company of a magazine is calculated by
 the formula
 $y=4 x(140-x)$,
 where y is the profit (in pounds) and x is the selling price (in pence) of the
 magazine.
 The graph below represents the profit y against the selling price x.\quadFind the maximum profit the company can make from the sale of the
 magazine. | |
| :--- | :--- | :--- | :--- |

Section B

MARKING

Section B - Marking Scheme

Marking Scheme

Paper 1

Paper 2

Q		Marks
4	 Notes: (i) for the $1^{\text {st }}$ mark, the equation need not be explicit, thus 0,140 alone is awarded the $1^{\text {st }}$ and $2^{\text {nd }}$ marks (ii) a statement of $x=70$ leading to $£ 19600$ may be awarded a maximum of $\frac{2}{4}$ (iii) any method involving trial and improvement receives no credit	

