N5 RELATIONSHIPS 1.1

This resource is to support pupils in passing the appropriate National 5 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course.

In addition the questions from **Paper 1 (P1)** should be completed **without** the use of a calculator and questions from **Paper 2 (P2)** permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 5 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment Standard	Sub skills	Section A – Question Number
Relationships	determining the equation of a straight line given the gradient	Q1
1.1	working with linear equations or inequations	Q2 (equation) Q3 (inequation)
Applying algebraic skills to linear	working with simultaneous equations	Q4
equations	changing the subject of a formula	Q5

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A \text{ or } \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Area of a triangle:
$$A = \frac{1}{2}ab\sin C$$

Volume of a sphere:
$$V = \frac{4}{3}\pi r^3$$

Volume of a cone:
$$V = \frac{1}{3}\pi r^2 h$$

Volume of a pyramid:
$$V = \frac{1}{3}Ah$$

Standard deviation:
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}}$$
, where n is the sample size.

Section A

Section A

Q			Marks
1 P1	6.	A taxi fare consists of a £2 "call-out" charge plus a fixed amount per kilometre.	4 (2.1)
		The graph shows the fare, f pounds for a journey of d kilometres.	
		pounds $ \begin{array}{c} f \\ \hline (5,6) \end{array} $ kilometres	
		The taxi fare for a 5 kilometre journey is £6.	
		Find the equation of the straight line in terms of d and f .	
	_		2
2 P1	4.	Solve the equation	3
-		$3x+1=\frac{x-5}{2}.$	
3		(b) Solve the inequality	3
P1	7.	$4x - 5 \le 7x - 20.$	
4	11.	(a) A cinema has 300 seats which are either standard or deluxe.	1
P1		Let x be the number of standard seats and y be the number of deluxe seats.	(2.1)
		Write down an algebraic expression to illustrate this information.	
		(b) A standard seat costs £4 and a deluxe seat costs £6.	2 (2.1)
		When all the seats are sold the ticket sales are £1380.	(2.1)
		Write down an algebraic expression to illustrate this information.	
		(c) How many standard seats and how many deluxe seats are in the cinema?	3 (2.2)

5			3
P1	4.	D = 2(m-4)	
		$P = \frac{2(m-4)}{3}$	
		Change the subject of the formula to m .	

Section A

MARKING SCHEME

nestion No	Give 1 mark for each ●	Illustrations of evidence for awar each mark	rding
6	Ans: $f = \frac{4}{5}d + 2$		
	• gradient	• 4/5	
	• y-intercept	• +2	
	linear equation	$y = \frac{4}{5}x + 2$ $f = \frac{4}{5}d + 2$	
	• equation in terms of d and f	$\bullet f = \frac{4}{5}d + 2$	
			4KU
otes:			
(i) f	or a correct equation without working	award	$\frac{4}{4}$
(ii) v	where the gradient and/or y-intercept are wrong and 4 th marks are still available	, but explicitly stated, the 3 rd	
(iii) f	or an answer of $f = \frac{4}{5}d$	award	$\frac{2}{4}$
(1	unless the y-intercept has been explicitly stated	as zero, in which case, award $\frac{3}{4}$)	
(iv) f	or an answer of $f = \frac{4}{5}d + c$	award	$\frac{2}{4}$
(v) a	n equation involving transposition of f and d m	ay be awarded a maximum of $\frac{3}{4}$	
4	Ans: $-\frac{7}{5}$		
	starting to solve equation	• $6x + 2 = x - 5$	
	collecting like terms	• 5 <i>x</i> = -7	
	• solution	$\bullet x = -\frac{7}{5}$	
			3K

3	7	b		Solve the inequality							
				$4x - 5 \le 7x - 20$							
				Ans: $x \ge 5$ or $5 \le x$			3				
				•¹ dealing with variable				$ullet^1$	-3x or 3	3x	
				• dealing with constant				•2	-15 or 1	15	
				•³ solution			(KU)	•3	$x \ge 5$ or	·5≤x	
4		(-)	A								
	11 ((a)		x + y = 300			200				
			•	equation	•	x+y	= 300		1KU		
	Notes	:									
	(Ъ)	Ans	4x + 6y = 1380							
			• 1	terms	•	4x an	d 6y				
			• (equation	•	4x+	6y = 1380		****		
									2KU		
	Notes	:									
	(c)	Ans	s: 210 standard and 90 deluxe							
			• (evidence of scaling	•	4x+	4y = 1200 or	r equival	ent		
			• ,	value of x	•	210					
			•	value of y	•	90					
									3RE		
	Notes	:			1						
	((i) f	or 90	and 210 without working					award $\frac{0}{3}$		
	((ii) f	for 90	and 210 verified in both equations					award $\frac{1}{3}$		

4	Ans: $m = \frac{3P+8}{2}$ or $m = \frac{3P}{2} + 4$		
	Method 1:		
	dealing with denominator	• 3P	
	dealing with constant	$\bullet \qquad 3P + 8 = 2m$	
	dealing with coefficient	$\bullet \frac{3P+8}{2}$	
	Method 2:		
	dealing with denominator	• 3P	
	dealing with coefficient	$\bullet \frac{3P}{2} = m - 4$	
	dealing with constant	• $\frac{3P}{2} + 4$	
		3KU	
Notes:			
			_

Section B

Section B

Paper 1 Questions

Q			Marks
1	3.	$W = BH^2$.	2
	_	Change the subject of the formula to H .	
2	4.	A straight line cuts the x-axis at the point $(9, 0)$ and the y-axis at the point $(0, 18)$ as shown.	3
		18 O 9 x	
	_	Find the equation of this line.	
3	6.	 Jane enters a two-part race. (a) She cycles for 2 hours at a speed of (x + 8) kilometres per hour. Write down an expression in x for the distance cycled. (b) She then runs for 30 minutes at a speed of x kilometres per hour. 	1 (2.1)
		Write down an expression in x for the distance run.	(2.1)
		(c) The total distance of the race is 46 kilometres. Calculate Jane's running speed.	(2.2)

4	8.	In triangle PQR:	
		• $PQ = x$ centimetres	
		• $PR = 5x$ centimetres	
		• QR = $2y$ centimetres.	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		(a) The perimeter of the triangle is 42 centimetres.Write down an equation in x and y to illustrate this information.	2 (2.1)
		(b) PR is 2 centimetres longer than QR.	2 (2.1)
		Write down another equation in x and y to illustrate this information.	(2.1)
		(c) Hence calculate the values of x and y .	3
5	9	. A formula used to calculate the flow of water in a pipe is	3
		$f = \frac{kd^2}{20}.$	
	_	Change the subject of the formula to d.	
6	3	. Change the subject of the formula to s.	3
		$t = \frac{7s + 4}{2} .$	

7	7. A straight line has equation $y = mx + c$, where m and c are constants.	
	(a) The point (2, 7) lies on this line.	1
	Write down an equation in m and c to illustrate this information.	(2.1)
	(b) A second point (4, 17) also lies on this line.	1
	Write down another equation in m and c to illustrate this information.	(2.1)
	(c) Hence calculate the values of m and c .	3
	(d) Write down the gradient of this line.	1 (2.2)
8	9. Part of the graph of the straight line with equation $y = \frac{1}{3}x + 2$, is shown below. $y = \frac{1}{3}x + 2$ $y = \frac{1}{3}x + 2$	
	(a) Find the coordinates of the point B.	2 (2.1)
	(b) For what values of x is $y < 0$?	1

Two triangles have dimensions as shown. 11. (2.1)(2.2) -(x-1)The triangles are equal in area. **Calculate** the value of x.

10	7. (a) Brian, Molly and their four children visit Waterworld.	1
	The total cost of their tickets is £56.	(2.1)
	Let a pounds be the cost of an adult's ticket and c pounds the cost of a child's ticket. Write down an equation in terms of a and c to illustrate this	
	information. (b) Sarah and her three children visit Waterworld.	
	The total cost of their tickets is $£36$.	1
	Write down another equation in terms of a and c to illustrate this information.	(2.1)
	(c) (i) Calculate the cost of a child's ticket.(ii) Calculate the cost of an adult's ticket.	2 (2.2) 1
	(ii) Calculate the cost of all addit's ticket.	(2.2)
11	3. Change the subject of the formula to m.	2
	$L = \frac{\sqrt{m}}{k}$	

12	8.	The graph below shows two straight lines.	4
		• $y = 2x - 3$	
		$\bullet \qquad x + 2y = 14$	
		$y \uparrow $ $y = 2x - 3$	
		P	
		0	
		\sim	
		x + 2y = 14	
		The lines intersect at the point P.	
		Find, algebraically, the coordinates of P.	
13	9.	Each day, Marissa drives 40 kilometres to work.	
		(a) On Monday, she drives at a speed of x kilometres per hour.	1
		Find the time taken, in terms of x , for her journey.	(2.1)
		(b) On Tuesday, she drives 5 kilometres per hour faster .	
		Find the time taken, in terms of x , for this journey.	1 (2.1)
		(c) Hence find an expression, in terms of x, for the difference in times of the two journeys.	3
		Give this expression in its simplest form.	
14	4.	Change the subject of the formula to r .	2
		$A=4\pi r^2.$	

15	6.	Joan buys gold and silver charms to make bracelets.	
		2 gold charms and 5 silver charms cost £125.	
		(a) Let g pounds be the cost of one gold charm and s pounds be the cost of one silver charm.	1 (2.1)
		Write down an equation in terms of g and s to illustrate the above information.	
		4 gold charms and 3 silver charms cost £145.	
		(b) Write down another equation in terms of g and s to illustrate this information.	1 (2.1)
		(c) Hence calculate the cost of each type of charm.	3 (2.2)

16 Four straight line graphs are shown below. A В y C D y O Which one of these above could represent the line with equation 2x + y = 3? Give two reasons to justify your answer. **17** 9. Quick-Smile photographers charge the following rates: 50p per photograph for the first 12 photographs printed 35p per photograph for any further photographs printed £4.25 for a CD of the photographs. 2 (a) How much will it cost to have 16 photographs printed plus a CD? (b) Find a formula for C, the cost in pounds, of having x photographs printed (where x is greater than 12) plus a CD. (2.1) 18 11. (a) A straight line has equation 4x+3y=12. Find the gradient of this line.

Paper 2 Questions

Q			Marks
19	4.	Solve the inequality	2
		$\frac{x}{4} - \frac{1}{2} < 5.$	
20	4.	Aaron saves 50 pence and 20 pence coins in his piggy bank.	
		Let x be the number of 50 pence coins in his bank.	
		Let y be the number of 20 pence coins in his bank.	
		(a) There are 60 coins in his bank.	1
		Write down an equation in x and y to illustrate this information.	(2.1)
		(b) The total value of the coins is £17.40.	
		Write down another equation in x and y to illustrate this information.	1 (2.1)
		(c) Hence find algebraically the number of 50 pence coins Aaron has in his piggy bank.	3 (2.2)

score of 20.

21 To hire a car costs £25 per day plus a mileage charge. The first 200 miles are free with each additional mile charged at 12 pence. CAR HIRE £25 per day · first 200 miles free · each additional mile only 12p (a) Calculate the cost of hiring a car for 4 days when the mileage is 1 640 miles. (b) A car is hired for d days and the mileage is m miles where m > 200. Write down a formula for the cost $f_{c}C$ of hiring the car. (2.1)22 Teams in a quiz answer questions on film and sport. This scatter graph shows the scores of some of the teams. 21 sport score 0 9 15 film score A line of best fit is drawn as shown above. (a) Find the equation of this straight line. 4 2 (b) Use this equation to estimate the sport score for a team with a film

(2.1)

(2.2)

23	10. Tom and Samia are paid the same hourly rate.	3 (2.1)		
	Harry is paid $\frac{1}{3}$ more per hour than Tom.	(2.2)		
	Tom worked 15 hours, Samia worked 8 hours and Harry worked 12 hours.			
	They were paid a total of £429.			
	How much was Tom paid?			
24	 A taxi fare consists of a call-out charge of £1.80 plus a fixed cost per kilometre. 			
	A journey of 4 kilometres costs £6.60.			
	The straight line graph shows the fare, f pounds, for a journey of d kilometres.			
	pounds $ \begin{array}{c} 1.80 \\ \hline 0 \\ kilometres \end{array} $			
	(a) Find the equation of the straight line.	3 2		
	(b) Calculate the fare for a journey of 7 kilometres.	(2.1) (2.2)		

25	3.		groups of people go to a theatre. buys tickets for 5 adults and 3 children.	
			total cost of his tickets is £158·25.	
		(a)	Write down an equation to illustrate this information.	1 (2.1)
		(b)	Ben buys tickets for 3 adults and 2 children. The total cost of his tickets is £98. Write down an equation to illustrate this information.	1 (2.1)
		(c)	Calculate the cost of a ticket for an adult and the cost of a ticket for a child.	4 (2.2)
26	11.	Ch	ange the subject of the formula $s = ut + \frac{1}{2}at^2$ to a .	3

Section B

MARKING SCHEME

Section B - Marking Scheme

Marking Scheme

Paper 1

Q			Marks
1	3	Ans: $H = \sqrt{\frac{W}{B}}$ • beginning to rearrange • $H^2 = \frac{W}{B}$ • completed rearrangement • $H = \sqrt{\frac{W}{B}}$	
	Notes:		
	(i)	for $H = \sqrt{\frac{W}{B}}$, with or without working award $\frac{2}{2}$	
	(ii)	for $H = \frac{\sqrt{W}}{B}$, with or without working award $\frac{1}{2}$	
	(iii)	the 2^{nd} mark is for the square root of the candidate's expression for H^2	

2	4	Ans: $y = -2x + 18$		
		gradient	• -2	
			**	
		y-intercept	• 18	
		linear equation	• $y = -2x + 18$	
			3K)	U
	Notes:			
	(i)	for $y = -2x + 18$, with or without working	award $\frac{3}{3}$	
	(ii)	for $y = -2x + c$, with or without working	award $\frac{1}{3}$	
	(iii)	for $y = mx + 18$, with or without working	award $\frac{1}{3}$	
	(iv)	for an incorrect equation, the 3 rd mark can be a gradient and y-intercept are consistent with sta		
3		, ,		
	6 (a)	Ans: $2(x+8)$		
		• expression	• $2(x+8)$	
				1KU
	(b)	Ans: 0.5x		
		expression	• 0.5 <i>x</i>	
				1KU
	(c)	Ans: 12 kilometres per hour		
		equating the two distances	• $2(x+8)+0.5x=46$	
		collecting like terms	• $2.5x = 30$	
		• solution	• x = 12	3RE
	Notes:			
	(i)	for answer of 12 km/h without working	award	1/3

8 (a)	Ans : $6x + 2y = 42$		
	starting to form equation	• x+5x+2y	
	• equation	• $x + 5x + 2y = 42$ 2KU	
NOTES:	I .		
(b)	Ans: $5x - 2y = 2$		
	starting to form equation	 an equation containing only the terms 5x, 2y and 2 	
	• equation	• $5x - 2y = 2$ 2RE	
NOTES:			
NOTES:	Ans: $x = 4, y = 9$ • method	• 11x = 44 or equivalent	
		 11x = 44 or equivalent x = 4 	
	• method		
	methodprocessing	 x = 4 y = 9 	

5	9	Ans: $d = \sqrt{\frac{20f}{k}}$		
		beginning to rearrange	• $kd^2 = 20f$	
		continuing rearrangement		
		completed rearrangement	$\bullet d = \sqrt{\frac{20f}{k}}$	
				3KU
	NOTES:			
	(i)	for $d = \sqrt{\frac{20f}{k}}$, with or without working		award 3/3
	(ii)	for $d = \frac{\sqrt{20f}}{k}$, with or without working		award 2/3
	(iii)	the 3 rd mark is for the square root of the cand	idate's expression for d^2	
6	3	$\mathbf{Ans:} s = \frac{2t - 4}{7}$		
		beginning to rearrange	• 7 <i>s</i> + 4 = 2 <i>t</i>	
		continuing to rearrange	$\bullet 7s = 2t - 4$	
		completed rearrangement		
				3KU

7	7 (a)	Ans: $2m + c = 7$			
		• equation	• 2m + c = 7	U	
	(b)	Ans: $4m + c = 17$ • equation	• 4m + c = 17		
			1K	ū	
	NOTES:	1 11 116 6 6			
	(1) m	arks can only be awarded for equations in term	ns of m and c		
	(e)	Ans: $m = 5, c = -3$			
		• method	• 2 <i>m</i> = 10 or similar		
		• value of m	• 5		
		• value of c	• -3	E	
	NOTES:				
	(i) a	except alternative methods eg $m = \frac{17 - 4}{4 - 4}$	7 2		
		or graphical	solution		
	(d)	Ans: 5			
		• gradient	• 5	E	
	NOTES:				
	(i) th	e final mark is awarded for either the correct g	gradient (5) or the value of m from part (c)		

8	9 (a)	Ans: B(-6,0)		
		starting to solve	$\bullet \frac{1}{3}x + 2 = 0$	
		coordinates of B	• (-6,0)	2KU
	NOTES:		1	
	(i) fe	for $(-6,0)$ with or without working		award 2/2
	(ii) fo	or $(0, -6)$ with or without working		award 1/2
	(iii) a	nswer must be in co-ordinate form		
	(b)	Ans: $x < -6$		
		• solution	• x<-6	1RE
9	11	Ans: $x = \frac{6}{5}$		
		• strategy	• $\frac{1}{2} \times 1 \times \frac{x}{2}$ or $\frac{1}{2} \times 3 \times (x-1)$	
		forming a valid equation	$\bullet \qquad \frac{1}{2} \times 1 \times \frac{x}{2} = \frac{1}{2} \times 3 \times (x - 1)$	
		starting to solve	$\bullet \qquad x = 6(x-1)$	
		• solution	$\bullet \qquad x = \frac{6}{5}$	
				4RE
	NOTES:			
	(i) an	reas need not be explicitly stated		
	(ii) fo	or $1 \times \frac{x}{2} = 3(x-1)$ award the first two marks		
		or $1 \times \frac{x}{2} = 3(x-1)$ arising from Area of Triangwarded	$le = b \times h$, the first two marks can	nnot be

10	7 (a)	Ans: $2a + 4c = 56$		
		correct equation	$\bullet 2a + 4c = 56$	
			lKU	
	(b)	Ans: $a + 3c = 36$		
	(6)			
		correct equation	$\bullet a+3c=36$	
			lKU	
	(c)	Ans: £8 and £12		
		evidence of scaling	• $2a + 6c = 72$ or equivalent	
		processing	• $c = 8$ or $a = 12$	
		processing	second value	
			3RE	
	NOTES:			
	Trial	Error method:		
	1 st ma	ark not available		
	2 nd m	for $c = 8$ and $a = 12$		
	3 rd m	ark for verification of $c = 8$ and $a = 1$	2 in BOTH equations	
11	3 A	$ms: m = (kL)^2$		
	•	beginning to rearrange	• $\sqrt{m} = kL$	
	•	completed rearrangement	• $m = (kL)^2$ or k^2L^2	
			2KU	

12	8	Ans: (4,5)			
		Method 1			
		re-arranging terms	• $2y = -x + 14$		
		evidence of scaling	• $4y = -2x + 28$		
		one value	• y = 5		
		• coordinates	• (4,5)	4KU	
				480	
		Ans: (4,5)			
		Method 2			
		• substitution	• $x + 2(2x - 3) = 14$		
		simplifying	• 5x-6=14		
		one value	• x=4		
		coordinates	• (4,5)	4KU	
	NOTES:	1			
	(i)	for (4, 5) without working but checked in bot	th equations	award 1/4	
	(ii)	for (4, 5) without either working or checking		award 0/4	
	(iii)	The final mark is available only for an answe	r in coordinate form		

, T				
3 !	9 (a)	Ans: $\frac{40}{x}$	(
		statement of time	$\bullet (T =)\frac{40}{x}$	ıku
	(b)	Ans: $\frac{40}{x+5}$		
		statement of time	$\bullet (T=)\frac{40}{x+5}$	1RE
	(c)	Ans: $\frac{200}{x(x+5)}$		
		strategy	• $\frac{40}{x} - \frac{40}{x+5}$	
		common denominator	$\bullet \frac{\dots}{x(x+5)} - \frac{\dots}{x(x+5)}$	
		simplified expression	$\bullet \frac{200}{x(x+5)}$	3RE
NO	OTES:			
(i)	A c	andidate who writes $\frac{40}{x+5} - \frac{40}{x}$ gains the first	st mark	
(ii)) The	e final mark may be awarded for $\frac{-200}{x(x+5)}$ if it	leads to $\frac{200}{x(x+5)}$	
1				

а	•	2 gold charms and 5 silver charms cost £125. Let g pounds be the cost of one gold charm and s pounds be the cost of one silver charm.			
a		charm and s pounds be the cost of one			
		Write down an equation in terms of g and s to illustrate the above information.			
		Ans: $2g + 5s = 125$	1		
		•¹ process	(KU)	•1 $2g + 5s = 125$	
6		4 gold charms and 3 silver charms cost £145.			
ь		Write down another equation in terms of g and s to illustrate this information.			
		Ans: $4g + 3s = 145$	1		
		•¹ process	(KU)	• $4g + 3s = 145$	
6 c		Hence calculate the cost of each type of charm.			
		Ans: $g = 25$; $s = 15$	3		
		•1 starting process		•¹ evidence of scaling	
		•² value of one variable		• ² $g = 25$	
		•³ value of a second variable	(RE)	•3 $s = 15$	
Notes:					
(i) f	for g=	= 25 and s = 15 without working but check	ed in botl	h equations award 1/3	
(ii) f	for g=	= 25 and s = 15 without working		award 0/3	

16	8	Four straight line graphs are shown below.	
		$A y \uparrow / B y \uparrow$	
		Which one of these above could represent the line with equation $2x + y = 3$?	
		Give two reasons to justify your answer.	
		Ans: graph D 3	
		• re-arranging	
		• 2 understanding 2 m – negative c – positive	
		•³ conclusion (RE) •³ D	
	Notes		
	(i)	for an answer with no working award 0/3	
	(ii)	for candidates who do not re-arrange, the 1 st mark can be awarded only if the correct gradient and intercept are stated	

9			Quick-Smile photographers charge the following rates:			
		a	 50p per photograph for the first 12 photographs printed 35p per photograph for any further photographs printed £4·25 for a CD of the photographs. How much will it cost to have 16 			
			photographs printed plus a CD?			
			Ans: £11-65	2		
			•1 starting the process		•1	either (12 × 0·5) + 4·25 or (16 – 12) × 0·35
			•² calculation	(KU)	•2	£11-65
No	otes	s:		(120)		
ര		for	£11.65 with/without working	aı	ward 2/	2
(i) (ii)			t £11.65 with/without working e 2 nd mark may be awarded only for a correct		ward 2/ on invo	
)		_			
(ii)	the	Find a formula for C, the cost in pounds, of having x photographs printed (where x is greater than 12)			
(ii)	the	Find a formula for C, the cost in pounds, of having x photographs printed (where x is greater than 12) plus a CD.	t calculation		
(ii)	the	Find a formula for C, the cost in pounds, of having x photographs printed (where x is greater than 12) plus a CD. Ans: (c =) 6 + (x-12) 0·35 + 4·25	t calculation	on invo	olving all 3 rates.
(ii)	the	Find a formula for C, the cost in pounds, of having x photographs printed (where x is greater than 12) plus a CD. Ans: (c =) 6 + (x-12) 0·35 + 4·25 • starting strategy	t calculation	on invo	olving all 3 rates.
9)	the	Find a formula for C, the cost in pounds, of having x photographs printed (where x is greater than 12) plus a CD. Ans: (c =) 6 + (x-12) 0·35 + 4·25 •¹ starting strategy •² continuing strategy	t calculation	on invo	olving all 3 rates. 12×0.5 $(x-12) \times 0.35$
9 No	otes	thee	Find a formula for C, the cost in pounds, of having x photographs printed (where x is greater than 12) plus a CD. Ans: (c =) 6 + (x-12) 0·35 + 4·25 •¹ starting strategy •² continuing strategy •³ formula	t calculation	on invo	olving all 3 rates. 12×0.5 $(x-12) \times 0.35$
9	otes	the b	Find a formula for C, the cost in pounds, of having x photographs printed (where x is greater than 12) plus a CD. Ans: (c =) 6 + (x-12) 0·35 + 4·25 •¹ starting strategy •² continuing strategy	t calculation	•1 •2 •3	olving all 3 rates. 12×0.5 $(x-12) \times 0.35$ $6 + (x-12) 0.35 + 4.25$

18	Question	Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •	
	11. (a)	Ans: gradient = $-\frac{4}{3}$	2		
		• 1 start to rearrange		• 1 $3y = -4x + 12$ • 2 $-\frac{4}{}$	
		• ² state gradient		3	
	2. Some con (a) -1	nswer without working nmon answers (no working necessary	award 2	/2	
	(b) -1				
	(c) $-\frac{4}{3}$				
	(d) $\frac{4}{3}$	award 1/2			
	(e) $\frac{4}{3}$	award 0/2			
	I			I	

Paper 2

Q						Marks
19	Question No	n Give 1 mark for each	•	Illustrations of evider each ma		
	4	Ans: $x \le 22$ • dealing with denominator or 0	constant	• $x-2 < 20$ or $\frac{x}{4} < 5$	1/2	
		• solution		• x < 22	2K	I
	Notes:					
20	4 (a)	Ans: $x + y = 60$ • equation	• x + y = 6	0 1KU		
	(b)	Ans: $50x + 20y = 1740$ • equation	• 50x + 20	y = 1740 1KU		
	(c)	Ans: 18 fifty pence coins • evidence of scaling	• 20x + 20	y = 1200 or equivalent		
		• processing	0 or equivalent			
		• value of x	• 18	3RE		
	Notes:					
	(i)	for 18 without working		award $\frac{0}{3}$		
	(ii)	for 18 and 42 verified in both equations		award $\frac{1}{3}$		

21	10 (a)	Ans: £152.80		
		• solution	• 152.80	1KU
	(b)	Ans: $C = 25d + 0.12m - 24$		
		starting formula	• 25d	
		• continuation	• 0.12 <i>m</i>	
		formula	• $C = 25d + 0.12m - 24$ or C = 25d + 0.12(m - 200)	
				3RE
22	6 (a)	Ans: $y = 2x + 3$	1	
		gradient	• 2	
		y-intercept	• (c =)3	
		gradient or intercept in equation	• $y = 2x \cdots$ or $y = \cdots + 3$	
		linear equation		
			4KU	
	Notes:			
	(i)	for a correct equation without working	award 4/4	
	(ii)	where the gradient and/or y-intercept are wro marks are still available	ng, but explicitly stated, the 3 rd and 4 th	
	(b)	Ans: 43		
		substitution	• 2×20+3	
		evaluation	• 43 2RE	
	Notes:			
	(i)	for 43 with or without working	award 2/2	

 $\frac{429}{35} \times 15 = £183 \cdot 86$

10	Ans: £165		
	 Valid strategy involving ¹/₃ 	• $12 + \frac{1}{3}$ (12) or $x + \frac{1}{3}$ x	
	Creating an equation	• 15 + 8 + 16 = 39 Or	
		• $15x + 8x + 12\left(\frac{4}{3}x\right) = 39 x$	
	• solution	• $\frac{429}{39} \times 15 = £165$	
			3KU

award 1/3

24	10 (a)	Ans: $f = 1.2d + 1.8$			
		gradient	• 1.2		
		• y-intercept	• 1.8		
		linear equation	• $f=1\cdot 2d+1\cdot 8$		
				3KU	
	NOTES:	•			
	(i)	for a correct equation without working		award 3/3	
	(ii)	where the gradient and/or y-intercept are wrong mark is still available	, but explicitly stated, the 3 rd		
	(b)	Ans: £10·20			
		substitution	• 1·2×7+1·8		
		evaluation	• 10·2(0)		
				2RE	
	NOTES:				
	(i)	for 10·2(0) with or without working		award 2/2	

2	5
_	_

Question		Expected Answer(s) Give one mark for each •			
3.	•	(a)	Ans: $5a + 3c = 158.25$	1	
			•¹ construct equation		$\bullet^1 5a + 3c = 158.25$
N	ote	ic.		•	-

1. Accept variables other than \boldsymbol{a} and \boldsymbol{c} .

(b)	Ans: $3a + 2c = 98$	1	
	•¹ construct equation		$\bullet^1 3a + 2c = 98$

Notes:

(c)	Ans: Adult ticket costs £22·50 Child ticket costs £15·25	4	
	•¹ evidence of scaling		
	• ² follow a valid strategy through to produce values for <i>a</i> and <i>c</i>		$ullet^2$ values for a and c
	• ³ calculate correct values for a and c		• 3 $a = 22.5$ and $c = 15.25$
	• ⁴ communicate answers in money		● Adult £22.50 Child £15.25

Notes:

The fourth mark may only be awarded when all of the following are given in the final answer: the words "adult" and "child", the £ signs and both amounts written with two decimal figures.

26

Question	Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
11.	Ans: $a = \frac{2(s-ut)}{t^2}$	3	
	•¹ subtract ut		$\bullet^1 s - ut = \frac{1}{2}at^2$
	• 2 multiply by 2		$\bullet^2 \ 2(s-ut) = at^2$
	• 3 divide by t^2		$\bullet^3 \ a = \frac{2(s - ut)}{t^2}$

Notes:

Correct answer without working 1.

award 3/3

For subsequent incorrect working, the final mark is not available. 2.

3. For
$$a = \frac{s - ut}{\frac{1}{2}t^2}$$

award 2/3