N5 RELATIONSHIPS 1.1

This resource is to support pupils in passing the appropriate National 5 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course.

In addition the questions from Paper $1(P 1)$ should be completed without the use of a calculator and questions from Paper 2 (P2) permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 5 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment Standard	Sub skills	Section A - Question Number		
Relationships 1.1	determining the equation of a straight line given the gradient	Q1		
Applying algebraic skills with linear equations or inequations to linear equations	working with simultaneous equations	Q2 (equation)		
changing the subject of a formula			\quad Q5	Q4
:---				

FORMULAE LIST

The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A \text { or } \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Area of a triangle:

$$
A=\frac{1}{2} a b \sin C
$$

Volume of a sphere:

$$
V=\frac{4}{3} \pi r^{3}
$$

Volume of a cone:

$$
V=\frac{1}{3} \pi r^{2} h
$$

Volume of a pyramid:

$$
V=\frac{1}{3} A h
$$

Standard deviation: $\quad s=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\Sigma x^{2}-(\Sigma x)^{2} / n}{n-1}}$, where n is the sample size.

Section A

Section A

Q		Marks
$\begin{aligned} & \text { 1 } \\ & \text { P1 } \end{aligned}$	6. A taxi fare consists of a $£ 2$ "call-out" charge plus a fixed amount per kilometre. The graph shows the fare, f pounds for a journey of d kilometres. The taxi fare for a 5 kilometre journey is $£ 6$. Find the equation of the straight line in terms of d and f.	$\begin{array}{\|l\|} \hline 4 \\ \hline(2.1) \end{array}$
$\begin{aligned} & \mathbf{2} \\ & \text { P1 } \end{aligned}$	4. Solve the equation $3 x+1=\frac{x-5}{2} .$	3
$\begin{aligned} & \hline 3 \\ & \text { P1 } \end{aligned}$	(b) Solve the inequality $4 x-5 \leq 7 x-20 .$ 7.	3
$\begin{aligned} & 4 \\ & \text { P1 } \end{aligned}$	11. (a) A cinema has 300 seats which are either standard or deluxe. Let x be the number of standard seats and y be the number of deluxe seats. Write down an algebraic expression to illustrate this information. (b) A standard seat costs $£_{4} 4$ and a deluxe seat costs $£ 6$. When all the seats are sold the ticket sales are $£ 1380$. Write down an algebraic expression to illustrate this information. (c) How many standard seats and how many deluxe seats are in the cinema?	1 (2.1) 2 (2.1) 3 (2.2)

N5 - REL 1.1 - Remediation
P1
\square

Section A - Marking Scheme

7	b	Solve the inequality $4 x-5 \leq 7 x-20$ Ans: $x \geq 5$ or $5 \leq x$ - ${ }^{1}$ dealing with variable - ${ }^{2}$ dealing with constant -3 solution	3 (KU)	-1	$-3 x \text { or } 3 x$ -15 or 15 $x \geq 5 \text { or } 5 \leq x$

4

Section B

Section B

Paper 1 Questions

Q		Marks
1	3. $W=B H^{2}$ Change the subject of the formula to H.	2
2	4. A straight line cuts the x-axis at the point $(9,0)$ and the y-axis at the point $(0,18)$ as shown. Find the equation of this line.	3
3	6. Jane enters a two-part race. (a) She cycles for 2 hours at a speed of $(x+8)$ kilometres per hour. Write down an expression in x for the distance cycled. (b) She then runs for 30 minutes at a speed of x kilometres per hour. Write down an expression in x for the distance run. (c) The total distance of the race is 46 kilometres. Calculate Jane's running speed.	1 (2.1) 1 (2.1) 3 (2.2)

4	8. In triangle PQR : - $\mathrm{PQ}=x$ centimetres - $\mathrm{PR}=5 x$ centimetres - $\mathrm{QR}=2 y$ centimetres. (a) The perimeter of the triangle is 42 centimetres. Write down an equation in x and y to illustrate this information. (b) PR is 2 centimetres longer than QR . Write down another equation in x and y to illustrate this information. (c) Hence calculate the values of x and y.	2 (2.1) 2 (2.1) 3
5	9. A formula used to calculate the flow of water in a pipe is $f=\frac{k d^{2}}{20} .$ Change the subject of the formula to d.	3
6	3. Change the subject of the formula to s. $t=\frac{7 s+4}{2}$	3

7	7. A straight line has equation $y=m x+c$, where m and c are constants. (a) The point $(2,7)$ lies on this line. Write down an equation in m and c to illustrate this information. (b) A second point $(4,17)$ also lies on this line. Write down another equation in m and c to illustrate this information. (c) Hence calculate the values of m and c. (d) Write down the gradient of this line.	1 (2.1) 1 (2.1) 3 1 (2.2)
8	9. Part of the graph of the straight line with equation $y=\frac{1}{3} x+2$, is shown below. (a) Find the coordinates of the point B. (b) For what values of x is $y<0$?	$\begin{aligned} & 2 \\ & (2.1) \\ & 1 \end{aligned}$

9 11. Two triangles have dimensions as shown.

| 10 7. (a) Brian, Molly and their four children visit Waterworld. |
| :--- | :--- | :--- | :--- |
| The total cost of their tickets is $f_{5} 56$. |

12 8. The graph below shows two straight lines.

- $y=2 x-3$
- $x+2 y=14$

The lines intersect at the point P .
Find, algebraically, the coordinates of P.
13
9. Each day, Marissa drives 40 kilometres to work.
(a) On Monday, she drives at a speed of x kilometres per hour.

Find the time taken, in terms of x, for her journey.
(b) On Tuesday, she drives 5 kilometres per hour faster.

Find the time taken, in terms of x, for this journey.
(c) Hence find an expression, in terms of x, for the difference in times of the two journeys.
Give this expression in its simplest form.
14 4. Change the subject of the formula to r.

$$
A=4 \pi r^{2}
$$

15 6. Joan buys gold and silver charms to make bracelets.
2 gold charms and 5 silver charms cost $£ 125$.
(a) Let g pounds be the cost of one gold charm and s pounds be the cost of one silver charm.

Write down an equation in terms of g and s to illustrate the above information.

4 gold charms and 3 silver charms cost $£ 145$.
(b) Write down another equation in terms of g and s to illustrate this information.
(c) Hence calculate the cost of each type of charm.

Which one of these above could represent the line with equation $2 x+y=3$?
Give two reasons to justify your answer.
17
9. Quick-Smile photographers charge the following rates:

- 50 p per photograph for the first 12 photographs printed
- 35 p per photograph for any further photographs printed
- $£ 4 \cdot 25$ for a CD of the photographs.
(a) How much will it cost to have 16 photographs printed plus a CD?
(b) Find a formula for C , the cost in pounds, of having x photographs printed (where x is greater than 12) plus a CD.

18 11. (a) A straight line has equation $4 x+3 y=12$.

Find the gradient of this line.

Paper 2 Questions

Q		Marks
19	4. Solve the inequality $\frac{x}{4}-\frac{1}{2}<5 .$	2
20	4. Aaron saves 50 pence and 20 pence coins in his piggy bank. Let x be the number of 50 pence coins in his bank. Let y be the number of 20 pence coins in his bank. (a) There are 60 coins in his bank. Write down an equation in x and y to illustrate this information. (b) The total value of the coins is $£ 17 \cdot 40$. Write down another equation in x and y to illustrate this information. (c) Hence find algebraically the number of 50 pence coins Aaron has in his piggy bank.	1 (2.1) 1 (2.1) 3 (2.2)

21 10. To hire a car costs $£_{\mathrm{J}} 25$ per day plus a mileage charge.
The first 200 miles are free with each additional mile charged at 12 pence.

CAR HIRE
 £25 per day

- first 200 miles free
- each additional mile only 12 p
(a) Calculate the cost of hiring a car for 4 days when the mileage is 640 miles.
(b) A car is hired for d days and the mileage is m miles where $m>200$.

Write down a formula for the cost $£ C$ of hiring the car.
22 6. Teams in a quiz answer questions on film and sport.
This scatter graph shows the scores of some of the teams.
sport
score

A line of best fit is drawn as shown above.
(a) Find the equation of this straight line.
(b) Use this equation to estimate the sport score for a team with a film score of 20 .

23 10. Tom and Samia are paid the same hourly rate.
Harry is paid $\frac{1}{3}$ more per hour than Tom.
Tom worked 15 hours, Samia worked 8 hours and Harry worked 12 hours.
They were paid a total of $£ 429$.
How much was Tom paid?
24 10. A taxi fare consists of a call-out charge of $£ 1 \cdot 80$ plus a fixed cost per kilometre.
A journey of 4 kilometres costs $£ 6 \cdot 60$.
The straight line graph shows the fare, f pounds, for a journey of d kilometres.

(a) Find the equation of the straight line.
(b) Calculate the fare for a journey of 7 kilometres.

25 3. Two groups of people go to a theatre.
Bill buys tickets for 5 adults and 3 children.
The total cost of his tickets is $£ 158 \cdot 25$.
(a) Write down an equation to illustrate this information.
(b) Ben buys tickets for 3 adults and 2 children.

The total cost of his tickets is $£ 98$.
Write down an equation to illustrate this information.
(c) Calculate the cost of a ticket for an adult and the cost of a ticket for a child.
11. Change the subject of the formula $s=u t+\frac{1}{2} a t^{2}$ to a.

Section B - Marking Scheme

Marking Scheme

Paper 1

N5 - REL 1.1 - Remediation

N5 - REL 1.1 - Remediation

5	NOTES: (i) (ii) (iii)	Ans: $\quad d=\sqrt{\frac{20 f}{k}}$ - beginning to rearrange - continuing rearrangement - completed rearrangement for $d=\sqrt{\frac{20 f}{k}}$, with or without working for $d=\frac{\sqrt{20 f}}{k}$, with or without working the $3^{\text {rd }}$ mark is for the square root of the c	- $k d^{2}=20 f$ - $d^{2}=\frac{20 f}{k}$ - $d=\sqrt{\frac{20 f}{k}}$ date's expression for d^{2}	3 KU award $3 / 3$ award $2 / 3$	
6	3	Ans: $s=\frac{2 t-4}{7}$ - beginning to rearrange - continuing to rearrange - completed rearrangement	- $7 s+4=2 t$ - $7 s=2 t-4$ - $s=\frac{2 t-4}{7}$	3KU	

N5 - REL 1.1 - Remediation

N5 - REL 1.1 - Remediation

N5 - REL 1.1 - Remediation

N5 - REL 1.1 - Remediation

(16

Paper 2

N5 - REL 1.1 - Remediation

N5 - REL 1.1 - Remediation

23	10	Ans: £165 - Valid strategy involving $\frac{1}{3}$ - Creating an equation - solution	- $12+\frac{1}{3}(12)$ or $x+\frac{1}{3} x$ - $15+8+16=39$ Or - $15 x+8 x+12\left(\frac{4}{3} x\right)=39 x$ - $\frac{429}{39} \times 15=£ 165$	
				3 KU

NOTES:
(i) the final mark is for obtaining an hourly rate $\times 15$
eg $15+8+12=35$
$\frac{429}{35} \times 15=£ 183.86$

N5 - REL 1.1 - Remediation

25

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each
3.	(a)	Ans: $5 a+3 c=158 \cdot 25$ \bullet •1 construct equation	1	
Notes:			$\bullet^{1} 5 a+3 c=158 \cdot 25$	

1. Accept variables other than a and c.

| (b) | Ans: $3 a+2 c=98$
 \bullet construct equation | 1 | |
| :--- | :--- | :--- | :--- | :--- |

Notes:

(c)	Ans: Adult ticket costs $£ 22.50$ Child ticket costs $£ 15 \cdot 25$ - ${ }^{1}$ evidence of scaling \bullet^{2} follow a valid strategy through to produce values for a and c - ${ }^{3}$ calculate correct values for a and c - ${ }^{4}$ communicate answers in money	4	$\begin{aligned} \cdot 1 \mathrm{eg} 10 a+6 c & =316 \cdot 50 \\ 9 a+6 c & =294 \end{aligned}$ - ${ }^{2}$ values for a and c - ${ }^{3} a=22.5$ and $c=15.25$ - ${ }^{4}$ Adult $£ 22 \cdot 50$ Child $£ 15.25$

Notes:

1. The fourth mark may only be awarded when all of the following are given in the final answer: the words "adult" and "child", the $£$ signs and both amounts written with two decimal figures.
26

2. For subsequent incorrect working, the final mark is not available.
3. For $a=\frac{s-u t}{\frac{1}{2} t^{2}}$ award 2/3
