N5 EXPRESSIONS \& FORMULAE 1.4

This resource is to support pupils in passing the appropriate National 5 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course.

In addition the questions from Paper 1 (P1) should be completed without the use of a calculator and questions from Paper $2(P 2)$ permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 5 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment	Sub skills	Section A - Question Number
 Formulae 1.4	determining the gradient of a straight line given two points	Q1
Applying geometric skills linked to the use of formulae	calculating the volume of a standard solid with rounding to a given number of significant figures	Q2 (prism) (cylinder) Q4 (sphere) Q5 (cone)
	calculating the length of arc or the area of a sector of a circle	Q6 (length of arc) Q7 (area of sector)

FORMULAE LIST

The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A \text { or } \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Area of a triangle:

$$
A=\frac{1}{2} a b \sin C
$$

Volume of a sphere:

$$
V=\frac{4}{3} \pi r^{3}
$$

Volume of a cone:

$$
V=\frac{1}{3} \pi r^{2} h
$$

Volume of a pyramid:

$$
V=\frac{1}{3} A h
$$

Standard deviation: $\quad s=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\Sigma x^{2}-(\Sigma x)^{2} / n}{n-1}}$, where n is the sample size.

Section A

Section A

Q		Marks
	4. A straight line cuts the x-axis at the point $(9,0)$ and the y-axis at the point $(0,18)$ as shown. Find the gradient of this line.	1
	3. A container for oil is in the shape of a prism. The width of the container is 9 centimetres. The uniform cross section of the container consists of a rectangle and a triangle with dimensions as shown. Calculate the volume of the container, correct to the nearest litre.	4

$\begin{aligned} & \mathbf{3} \\ & \mathbf{P 2} \end{aligned}$	2. Lemonade is to be poured from a 2 litre bottle into glasses. Each glass is in the shape of a cylinder of radius 3 centimetres and height 8 centimetres. How many full glasses can be poured from the bottle?	$\begin{aligned} & \hline 4 \\ & (2.1) \\ & (2.2) \end{aligned}$
$\begin{aligned} & \hline 4 \\ & \text { P2 } \end{aligned}$	1. Calculate the volume of a sphere with radius 14 cm , giving your answer correct to two significant figures.	3

$\begin{aligned} & \hline 5 \\ & \text { P2 } \end{aligned}$	2. Calculate the volume of the cone:	2
$\begin{aligned} & \mathbf{6} \\ & \text { P2 } \end{aligned}$	6. A circle, centre O , has radius 36 centimetres. Part of this circle is shown. Angle $\mathrm{AOB}=140^{\circ}$. Calculate the length of arc AB.	3

$\begin{aligned} & \hline 7 \\ & \text { P2 } \end{aligned}$	7. A fan has four identical plastic blades. Each blade is a sector of a circle of radius 5 centimetres. The angle at the centre of each sector is 64°. Calculate the total area of plastic required to make the blades.	3

Pres		

N5-EF 1.4 - Remediation

N5 - EF 1.4 - Remediation

6		(i) f (ii) f (iii) th	Ans: $\quad \mathbf{8 8 . 0} \mathrm{cm}$ - fraction of circumference - use of formula - all calculations correct for 87.96 with or without working for 1583.36 from $\frac{140}{360} \times \pi \times 36^{2}$ the $3^{\text {rd }}$ mark is available only for a calc	- $\frac{140}{360}$ - $\frac{140}{360} \times \pi \times 72$ - 87.96 involving π	3KU award $3 / 3$ award 2/3		
7		Question No 7 Notes: (i) (ii)	Give 1 mark for each • Ans: $55.84 \mathrm{~cm}^{2}$ - fraction of area - use of formula - all calculations correct for 55.84 with or without working the $3^{\text {rd }}$ mark is available only for a calc	Illustrations of evi each - $\frac{64}{360}$ - $\frac{64}{360} \times \pi \times 5^{2}$ - $13.96 \times 4=55.84$ involving π	rk award $\frac{3}{3}$	ng 3 KU	

Section B

Section B

Paper 1 Questions

Q		Marks
1	8. A square, OSQR, is shown below. Q is the point $(8,8)$. The straight line TR cuts the y-axis at $\mathrm{T}(0,12)$ and the x-axis at R. (a) Find the equation of the line TR. The line TR also cuts $S Q$ at P. (b) Find the coordinates of P .	4 3

Paper 2 Questions

3 9. Contestants in a quiz have 25 seconds to answer a question.
This time is indicated on the clock.
The tip of the clock hand moves through the $\operatorname{arc} A B$ as shown.

(a) Calculate the size of angle AOB.
(b) The length of arc AB is 120 centimetres.

Calculate the length of the clock hand.

4 11. A cone is formed from a paper circle with a sector removed as shown.
The radius of the paper circle is 30 cm .
Angle AOB is 100°.

(a) Calculate the area of paper used to make the cone.
(b) Calculate the circumference of the base of the cone.

5	5. A concrete ramp is to be built.

The ramp is in the shape of a cuboid and a triangular prism with dimensions as shown.

(a) Calculate the value of x.
(b) Calculate the volume of concrete required to build the ramp. 3

6 5. A spiral staircase is being designed.

Each step is made from a sector of a circle as shown.
The radius is 1.2 metres.
Angle BAC is 42°.
For the staircase to pass safety regulations, the arc BC must be at least 0.9 metres.

Will the staircase pass safety regulations?

7	4. A sector of a circle, centre O , is shown below. The radius of the circle is 2.3 metres. Angle AOB is 65°. Find the length of the $\operatorname{arc} A B$.	3
8	3. A concrete block is in the shape of a prism. The cross section of the prism is a trapezium with dimensions as shown. (a) Calculate the area of the cross section. (b) Calculate the volume of the concrete block.	3 1

9
8. As the pendulum of a clock swings, its tip moves through an arc of a circle.

The length of the pendulum is 50 centimetres. The length of the arc is $36 \cdot 7$ centimetres.

Calculate x°, the angle through which the pendulum swings.

10 7. An ornament is in the shape of a cone with diameter 8 centimetres and height 15 centimetres.
The bottom contains a hemisphere made of copper with diameter 7.4 centimetres. The rest is made of glass, as shown in the diagram below.

Calculate the volume of the glass part of the ornament.
Give your answer correct to 2 significant figures.

11 13. The picture shows the entrance to a tunnel which is in the shape of part of a 5 circle.

The diagram below represents the cross-section of the tunnel.

- The centre of the circle is 0 .
- MN is a chord of the circle.
- Angle MON is 50°.
- The radius of the circle is 7 metres.

Calculate the area of the cross-section of the tunnel.

Section B

MARKING

 SCHEME
Section B - Marking Scheme

Marking Scheme

Paper 1

Paper 2

N5 - EF 1.4 - Remediation

N5-EF 1.4 - Remediation

N5 - EF 1.4 - Remediation

N5-EF 1.4-Remediation
6
8 (
9 (

10

Notes:

1. Accept variations in π.
2. Some common answers (working must be shown):
(i) $39\left(\frac{1}{3} \times \pi \times 4^{2} \times 15-\frac{4}{3} \times \pi \times 3.7^{3}\right) \quad$ award $4 / 5 \quad \checkmark \vee \times \checkmark \vee$
(ii) $120\left(\frac{1}{3} \times \pi \times 4^{2} \times 15-\frac{1}{2} \times \frac{4}{3} \times \pi \times 4^{3}\right) \quad$ award $4 / 5 \quad \checkmark \times \checkmark \vee \vee$
(iii) $\quad 110\left(\frac{1}{3} \times \pi \times 3.7^{2} \times 15-\frac{1}{2} \times \frac{4}{3} \times \pi \times 3.7^{3}\right) \quad$ award $4 / 5 \quad \times \vee \checkmark \checkmark \checkmark$
(iv) $160\left(\frac{1}{3} \times \pi \times 8^{2} \times 15-\frac{1}{2} \times \frac{4}{3} \times \pi \times 7 \cdot 4^{3}\right) \quad$ award $4 / 5 \quad \times \vee \vee \vee \vee$
(v) $360\left(\frac{1}{3} \times \pi \times 4^{2} \times 15+\frac{1}{2} \times \frac{4}{3} \times \pi \times 3.7^{3}\right) \quad$ award $4 / 5 \quad \checkmark \vee \times \checkmark \vee$
(vi) $460\left(\frac{1}{3} \times \pi \times 4^{2} \times 15+\frac{4}{3} \times \pi \times 3.7^{3}\right) \quad$ award $4 / 5 \quad \checkmark \vee \times \checkmark \checkmark$
(vii) $80\left(\frac{1}{3} \times \pi \times 3.7^{2} \times 15-\frac{1}{2} \times \frac{4}{3} \times \pi \times 4^{3}\right) \quad$ award $3 / 5 \quad \times \times \checkmark \vee \vee$
(viii) $250\left(\frac{1}{3} \times \pi \times 4^{2} \times 15\right) \quad$ award $2 / 5 \quad \checkmark \times \times \times v$
3. The final mark is only available where answers to all intermediate steps involve at least three significant figures.
eg $251 \cdot 32-106 \cdot 08=250-110=140$

N5-EF 1.4-Remediation
11

Que	tion	Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
13.		Ans: $151.3 \mathrm{~m}^{2}$ -1 know how to find area of segment -2 know to express sector as a fraction of a circle -3 know how to find area of sector - ${ }^{4}$ know how to calculate area of triangle - ${ }^{5}$ carry out all calculations correctly within a valid strategy	5	-1 evidence of e.g. major sector + triangle or circle - minor sector + triangle $\bullet 2 \frac{310}{360}$ or $\frac{50}{360}$ -3 $\frac{310}{360} \times \pi \times 7^{2}(=132 \cdot 56)$ or $\frac{50}{360} \times \pi \times 7^{2} \quad(=21 \cdot 38)$ - ${ }^{4} \quad \frac{1}{2} \times 7 \times 7 \times \sin 50 \quad(=18.77)$ - ${ }^{5} 151 \cdot 3 \mathrm{~m}^{2}$

Notes:

1. Accept variations in π; disregard premature or incorrect rounding of $\frac{310}{360}$ or $\frac{50}{360}$.
2. Use of RAD or GRAD (working must be shown)
(a) For 149.9 [uses GRAD]
(b) Where the use of RAD leads to an answer of $126 \cdot 1(-6 \cdot 43+132 \cdot 56)$ or $139 \cdot 0(6 \cdot 43+132 \cdot 56)$
award 5/5
award 4/5
3. Some common answers (working must be shown):
$56.6\left(\frac{310}{360} \times \pi \times 14+\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$
award 4/5 $\quad \checkmark \checkmark \times \checkmark \checkmark$
$40 \cdot 1\left(\frac{50}{360} \times \pi \times 7^{2}+\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$
award 4/5 $\quad x \checkmark \checkmark \checkmark \checkmark$
$2 \cdot 6\left(\frac{50}{360} \times \pi \times 7^{2}-\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$
award 4/5 $\quad x \checkmark \checkmark \checkmark \checkmark$
$24 \cdot 9\left(\frac{50}{360} \times \pi \times 14+\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$
award 3/5 $\quad x \checkmark \times \checkmark \checkmark$
$132 \cdot 6\left(\frac{310}{360} \times \pi \times 7^{2}\right)$
award 2/5 $\quad x \checkmark \checkmark \times x$
$21 \cdot 4\left(\frac{50}{360} \times \pi \times 7^{2}\right)$
$18.8\left(\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$
$153.9\left(\pi \times 7^{2}\right)$
award 2/5 $\quad x \checkmark \checkmark \times x$
award 1/5 $\quad x \times x \sqrt{x}$
award 0/5
4. The fifth mark is only available when the area of triangle MON is calculated using trigonometry.
