N5 EXPRESSIONS & FORMULAE 1.4

This resource is to support pupils in passing the appropriate National 5 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course.

In addition the questions from **Paper 1 (P1)** should be completed **without** the use of a calculator and questions from **Paper 2 (P2)** permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 5 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment Standard	Sub skills	Section A – Question Number
Expressions & Formulae 1.4	determining the gradient of a straight line given two points	Q1
Applying geometric skills linked to the use of formulae	calculating the volume of a standard solid with rounding to a given number of significant figures	Q2 (prism) Q3 (cylinder) Q4 (sphere) Q5 (cone)
	calculating the length of arc or the area of a sector of a circle	Q6 (length of arc) Q7 (area of sector)

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A \text{ or } \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Area of a triangle:
$$A = \frac{1}{2}ab\sin C$$

Volume of a sphere:
$$V = \frac{4}{3}\pi r^3$$

Volume of a cone:
$$V = \frac{1}{3}\pi r^2 h$$

Volume of a pyramid:
$$V = \frac{1}{3}Ah$$

Standard deviation:
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}}$$
, where n is the sample size.

Section A

Section A

7	7.	A fan has four identical plastic blades.	3
P2		Each blade is a sector of a circle of radius 5 centimetres. The angle at the centre of each sector is 64°. Calculate the total area of plastic required to make the blades.	

Section A

MARKING SCHEME

	Section A - Marking Scheme					
1	4. Gradient = -2					
2	3	Ans: 5 litres Method 1 • strategy (area of cross section) • strategy (volume of prism) • all calculations correct • correct rounding Method 2 • strategy (volume of cuboid) • strategy (volume of triangular prism) • all calculations correct • correct rounding Method 3 • strategy (volume of extended cuboid) • strategy (volume of triangular prism)	• $(28 \times 20) + (\frac{1}{2} \times 20 \times 4.5)$ (605) • $[(28 \times 20) + (\frac{1}{2} \times 20 \times 4.5)] \times 9$ • 5445 • 5 • $4KU$ • $9 \times 20 \times 28$ (5040) • $9 \times [\frac{1}{2} \times 20 \times 4.5]$ (405) • 5445 • 5 • $4KU$ • $9 \times 20 \times 32.5$ (5850) • $9 \times [\frac{1}{2} \times 20 \times 4.5]$ (405)			
		all calculations correct correct rounding	• 5445 • 5 4KU			
	NOTES:	for an Adam who admin 20 v 0 v 20 v 2	2.5 cale the final mark is smithly			
	(1)	for candidates who calculate $28 \times 9 \times 20 \times 3$	2.3, only the final mark is available			

3		2	Ans: 8	
			valid strategy	• knows to use $\pi r^2 h$
			• processing	• $\pi \times 3^2 \times 8 = 226.19$
			processing a division	• $\frac{2000}{72\pi}$ (= 8.84)
			• solution	8 (rounding down) 4RE
		NOTES:		
		(i)	the second mark is available only for a calcu	slation involving π and h
		(ii)	the 3 rd mark is available for	
			either: explicit evidence of division of 2	2000
			or: implicit evidence (unrounded con	nsistent value)
		(iii)	the final mark is available for an answer conneed not be stated)	sistent with the division (unrounded answer
	1	(iv)	if no rounding is required, the final mark car	nnot be awarded
4	•1	substi	tute and start calculation	$\bullet \frac{4}{3} \times \pi \times 14^3$
				$\frac{4}{3} \times \pi \times 2744$
	•2	compl	lete calculation	• =11494 · 04032 or equivalent
	•3	round	calculation to 2 significant figures	• $11000cm^3$
5	•1	substi	tute and start calculation	$\bullet \frac{1}{3} \times \pi \times 11^2 \times 22$
				$\frac{1}{3} \times \pi \times 121 \times 22$
	•2	compl	lete calculation	• = 2787 · 639881 or equivalent

6	6	Ans: 88-0 cm		
		fraction of circumference	• $\frac{140}{360}$	
		use of formula	$\bullet \frac{140}{360} \times \pi \times 72$	
		all calculations correct	• 87-96 3K U	
	NOTES:			
	(i)	for 87-96 with or without working	award 3/3	
	(ii)	for 1583·36 from $\frac{140}{360} \times \pi \times 36^2$	award 2/3	
	(iii)	the 3 rd mark is available only for a calculation	n involving π	
7	Question No	Give 1 mark for each ●	Illustrations of evidence for award each mark	ing
	7	Ans: 55 · 84 cm ² • fraction of area • use of formula • all calculations correct	• $\frac{64}{360}$ • $\frac{64}{360} \times \pi \times 5^2$ • $13.96 \times 4 = 55.84$	зки
	Notes:			
	(i)	for 55·84 with or without working	award $\frac{3}{3}$	
	(ii)	the 3 rd mark is available only for a calculati	ion involving π	

Section B

Section B

Paper 1 Questions

Paper 2 Questions

Q			Marks
Q 2	12.	A cylindrical paperweight of radius 3 centimetres and height 4 centimetres is filled with sand. Calculate the volume of sand in the paperweight. Another paperweight, in the shape of a hemisphere, is filled with sand.	Marks 2
		It contains the same volume of sand as the first paperweight. Calculate the radius of the hemisphere. [The volume of a hemisphere with radius r is given by the formula, $V = \frac{2}{3}\pi r^3$].	

3 9. Contestants in a quiz have 25 seconds to answer a question.

This time is indicated on the clock.

The tip of the clock hand moves through the arc AB as shown.

- (a) Calculate the size of angle AOB.
- (b) The length of arc AB is 120 centimetres.
 Calculate the length of the clock hand.

1

4 11. A cone is formed from a paper circle with a sector removed as shown.

The radius of the paper circle is 30 cm.

Angle AOB is 100°.

3

(a) Calculate the area of paper used to make the cone.

3

(b) Calculate the circumference of the base of the cone.

5 S. A concrete ramp is to be built.

The ramp is in the shape of a cuboid and a triangular prism with dimensions as shown.

- (a) Calculate the value of x.
 - Calculate the value of x. (2.1)
- (b) Calculate the volume of concrete required to build the ramp.

3 (2.2)

(2.1) (2.2)

6 5. A spiral staircase is being designed.

Each step is made from a sector of a circle as shown.

The radius is 1.2 metres.

Angle BAC is 42°.

For the staircase to pass safety regulations, the arc BC must be at least 0.9 metres.

Will the staircase pass safety regulations?

4. A sector of a circle, centre O, is shown below.

The radius of the circle is 2.3 metres.

Angle AOB is 65°.

8

Find the length of the arc AB.

3. A concrete block is in the shape of a prism.

The cross section of the prism is a trapezium with dimensions as shown.

(a) Calculate the area of the cross section.

(b) Calculate the volume of the concrete block.

1

3

18

9 8. As the pendulum of a clock swings, its tip moves through an arc of a circle.

The length of the pendulum is 50 centimetres. The length of the arc is 36.7 centimetres.

Calculate x° , the angle through which the pendulum swings.

7. An ornament is in the shape of a cone with diameter 8 centimetres and height 15 centimetres.

The bottom contains a hemisphere made of copper with diameter 7.4 centimetres. The rest is made of glass, as shown in the diagram below.

Calculate the volume of the glass part of the ornament.

Give your answer correct to 2 significant figures.

11 13. The picture shows the entrance to a tunnel which is in the shape of part of a circle.

The diagram below represents the cross-section of the tunnel.

- The centre of the circle is O.
- MN is a chord of the circle.
- Angle MON is 50°.
- The radius of the circle is 7 metres.

Calculate the area of the cross-section of the tunnel.

Section B

MARKING SCHEME

Section B - Marking Scheme

Marking Scheme

Paper 1

Q		Marks
_	8 (a) Ans: $y = -\frac{3}{2}x + 12$	
	• gradient • $m = -\frac{12}{8}$	
	• <i>y</i> -intercept • <i>c</i> = 12	
	• equation	
	387	J
	NOTES:	
	(i) for a correct equation without working award 3/3	
	 (ii) where the gradient and/or y-intercept are wrong, but explicitly stated, the 3rd mark is still available 	
	(b) Ans: $\left(\frac{8}{3}, 8\right)$	
	• method • recognising $y_p = 8$	
	• substitution	
	• solving equation	
	• solution $\left(\frac{8}{3}, 8\right)$	
	4RI	Ε
	NOTES:	
	 for the 4th mark, both coordinates must be consistent with the candidate's response for 1st and 3st marks 	

Paper 2

				Mai
12 (a)	Ans: 113-1 cm ²			
	• formula	• $V = \pi \times 3^2 \times 4$		
	• solution	• 113-1	2KU	
Notes:				
(i)	452·4 (using $\pi d^2 h$) may be awarded the	2 nd mark		
(ii)	75·4 (using πdh) may be awarded the	2 nd mark		
(ii)) for the use of any other wrong formula		award $\frac{0}{2}$	
(b)	Ans: 3.78 cm			
	forming equation	$\bullet \frac{2}{3}\pi \times r^3 = 113 \cdot 1$		
	rearranging	• $r^3 = 54$		
	• solution	• 3.78	3RE	
Notes:		1		
(i)	for $452.4 \rightarrow 216 \rightarrow 6.0$		award $\frac{3}{3}$	
(ii)) for 75·4 → 36 → 3·3		award $\frac{3}{3}$	
(iii	i) the third mark is available only for the cube roc	ot of a number		
	,, ,,			

N5 - EF 1.4 - Remediation

(b)				1KU
(0)	Ans: 45.8 cm • correct ratio	•	150 360	r 5/12
	• processing	•	$\frac{150}{360} = \frac{120}{2\pi r}$	$\frac{120}{\frac{5}{12}} = 288$
	 processing 	•	$r = \frac{360}{150} \times \frac{120}{2\pi}$	$r = \frac{288}{2\pi}$
	• solution	•	45.8	45.8
				4RE
	otes:	processingprocessingsolution	 processing processing solution 	• processing • $r = \frac{360}{360} = \frac{120}{2\pi r}$ • processing • $r = \frac{360}{150} \times \frac{120}{2\pi}$ • solution

N5 - EF 1.4 - Remediation

4	11(a)	Ans: 2042 cm ²		
		strategy	• $\frac{260}{360}$	
		• processing	$\bullet \frac{260}{360} \times \pi \times 30^2$	
		• solution	• 2042	
			3KU	
	Notes:	100/360 can be awarded the 1st mark only within the	the strategy $\pi r^2 - \frac{100}{360}\pi r^2$	
	(b)	Ans: 136.1 cm		
		strategy	circumference of base = length of arc	
		• process	$\bullet C = \frac{260}{360} \times \pi \times 60$	
		• process	• 136.1 3RE	
	Notes:	calculating only $C = \pi \times 60$	award 0/3	

N5 - EF 1.4 - Remediation

5	5 (a)	Ans: 0-866 m		
		• method	• $1^2 = x^2 + 0.5^2$	
		solution	• $x = 0.866\cdots$ 2RE	
	NOTES:			
	(b)	Ans: 1 · 57 m ³		
		process – area of cross section	• 0.5×0.5×0.866+0.5×(2-0.866)	
		process – volume of prism	● 0·7835×2	
		all calculations correct OR	• 1·567	
		process – volume of cuboid	 0⋅5×1⋅134×2=1⋅134 	
		process volume of cuodo	V 3A1 134A2-1134	
		process – volume of prism added to volume of cuboid	• 0⋅5×0⋅5×0⋅866×2+1⋅134	
		all calculations correct	• 1·567	

		I	T	
6	5	Ans: no, plus justification • strategy	• <u>42</u> 360	
		• processing	$ \begin{array}{c} 360 \\ \bullet \frac{42}{360} \times \pi \times 2.4 \end{array} $	
		• processing	• 0·879	
		• communication	• no, as 0.879 < 0.9	
			4RE	
	NOTES:			
	(i)	$\frac{42}{360} \times \pi \times 1.2 = 0.439 \qquad \longrightarrow \qquad \text{no etc}$	award 3/4	
	(ii)	$\frac{42}{360} \times \pi \times 1.2^2 = 0.527 \qquad \longrightarrow \qquad \text{no etc}$	award 2/4	
	(iii)	$\frac{42}{360} \times \pi \times 2 \cdot 4^2 = 2 \cdot 11 \qquad \qquad \text{yes etc}$	award 2/4	
	(iv)	the communication must include reference to the difference between them or the use of communication must include reference to the difference between them or the use of communication must include reference to the difference between them or the use of communication must include reference to the difference between them or the use of communication must include reference to the difference between them or the use of communication must include reference to the difference between them or the use of communication must include reference to the difference between them or the use of communication must include reference to the difference between them or the use of communication must include reference to the difference between them or the use of communication must include reference to the difference between them or the use of communication must include the difference between		
7	4	Ans: 2.61m		
		• ratio	• $\frac{65}{360}$ or $\frac{360}{65}$	
		• strategy	• $\frac{65}{360} \times \pi \times 4 \cdot 6$ or $\pi \times 4 \cdot 6 \div \frac{360}{65}$	
		all calculations correct	• 2-609	
			3KU	
	NOTES:			
	(i) fo	or 2-61 with or without working	award 3/3	
	(ii) fo	or $1 \cdot 3 \ (\times \pi \times 2 \cdot 3)$	award 2/3	
	(iii) fo	or $3 \cdot 0 \ (\times \pi \times 2 \cdot 3^2)$	award 1/3	
	(iv) th	ne 3 rd mark is available only for a calculation in	nvolving π	

8	3		A concrete block is in the shape of a prism.				
			22cm 22cm 22cm 20cm				
			The cross section of the prism is a trapezium with dimensions as shown.				
		a	Calculate the area of the cross section.				
			Ans: 540 cm ²	3			
			•¹ beginning process		•1	$2 \times \frac{1}{2} \times 5 \times 20 + (22 \times 20)$	
						$\frac{1}{2} \times 20 \times (22 + 32)$	
			•² processing		•2	100 + 440 or 10 × 54	
			•³ calculation	(KU)	•3	540	
	3	b	Calculate the volume of the concrete block.				
			Ans: 32 400 cm ³	1			
			•¹ calculation	(KU)	•1	32 400	

9	8			As the pendulum of a clock swings, its tip moves through an arc of a circle.					
				50 cm B					
				The length of the pendulum is 50 centimetres. The length of the arc is 36·7 centimetres. Calculate x°, the angle through which the pendulum swings.					
				Ans: 42°	3				
				•¹ strategy		•1	x 360		
				•² strategy		•2	$\frac{36 \cdot 7}{100\pi}$		
				• ³ solution	(RE)	•3	42°		
	Not	es:							
(i) for use of $C = \pi r^2$, the 1 st and 3 rd marks are still available									

	· ·	Remediation				
10	7	Oive one mark for each	71a1 K	awarunig a mark at eath -		
10	7.	150 cm ³ substitute correctly into formula for volume of cone	5	•1 $\frac{1}{3}$ × π ×4 ² ×15 (= 251·32)		
		substitute correctly into formula for volume of sphere or hemisphere		• $\frac{4}{3} \times \pi \times 3.7^3$ (= 212.17) or $\frac{1}{2} \times \frac{4}{3} \times \pi \times 3.7^3$ (= 106.08)		
		know to subtract volume of hemisphere from volume of cone		•³ evidence		
		carry out all calculations correctly (must involve difference or sum of two volume calculations)		• ⁴ 145-24		
		• 5 round final answer to 2 significant figures		• 5 150 (cm³)		
	1	riations in π . mon answers (working must be shown in $(\frac{1}{3} \times \pi \times 4^2 \times 15 - \frac{4}{3} \times \pi \times 3 \cdot 7^3)$				
	1	$0 \left(\frac{1}{3} \times \pi \times 4^2 \times 15 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 4^3\right)$				
	I	$0 \left(\frac{1}{3} \times \pi \times 3.7^{2} \times 15 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 3.7^{3} \right)$				
	1	$0 \left(\frac{1}{3} \times \pi \times 8^2 \times 15 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 7 \cdot 4^3 \right)$				
	I .	$0 \left(\frac{1}{3} \times \pi \times 4^2 \times 15 + \frac{1}{2} \times \frac{4}{3} \times \pi \times 3 \cdot 7^3 \right)$				
		$0 \left(\frac{1}{3} \times \pi \times 4^2 \times 15 + \frac{4}{3} \times \pi \times 3 \cdot 7^3 \right)$				
		$0 \left(\frac{1}{3} \times \pi \times 3 \cdot 7^2 \times 15 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 4^3 \right)$				
		$0 \left(\frac{1}{3} \times \pi \times 4^2 \times 15 \right)$		2/5		
	3. The final mark is only available where answers to all intermediate steps involve at least three significant figures. eg 251⋅32−106⋅08 = 250−110 = 140 award 4/5 ✓✓✓✓×					
	_					

11	Question	Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •	
	13.	Ans: 151·3 m² •1 know how to find area of segment •2 know to express sector as a fraction of a circle •3 know how to find area of sector	5	•¹ evidence of e.g. major sector + triangle or circle - minor sector + triangle •² $\frac{310}{360}$ or $\frac{50}{360}$ •³ $\frac{310}{360} \times \pi \times 7^2$ (= 132.56)	
		• 4 know how to calculate area of triangle • 5 carry out all calculations correctly within a valid strategy		or $\frac{50}{360} \times \pi \times 7^2$ (= 21·38) • $\frac{1}{2} \times 7 \times 7 \times \sin 50$ (=18·77) • $\frac{1}{2} \times 7 \times 7 \times \sin 50$ (=18·77)	

Notes

1. Accept variations in π ; disregard premature or incorrect rounding of $\frac{310}{360}$ or $\frac{50}{360}$.

2. Use of RAD or GRAD (working must be shown)

(a) For 149.9 [uses GRAD]

award 5/5

(b) Where the use of RAD leads to an answer of 126·1(-6·43+132·56) or 139·0(6·43+132·56)

award 4/5

3. Some common answers (working must be shown):

$$56.6 \left(\frac{310}{360} \times \pi \times 14 + \frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right) \qquad \text{award } 4/5 \quad \checkmark \checkmark \checkmark \checkmark$$

$$40.1 \left(\frac{50}{360} \times \pi \times 7^{2} + \frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right) \qquad \text{award } 4/5 \quad \times \checkmark \checkmark \checkmark$$

$$2.6 \left(\frac{50}{360} \times \pi \times 7^{2} - \frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right) \qquad \text{award } 4/5 \quad \times \checkmark \checkmark \checkmark$$

$$24.9 \left(\frac{50}{360} \times \pi \times 14 + \frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right) \qquad \text{award } 3/5 \quad \times \checkmark \times \checkmark \checkmark$$

$$132.6 \left(\frac{310}{360} \times \pi \times 7^{2}\right) \qquad \text{award } 2/5 \quad \times \checkmark \times \times$$

$$21.4 \left(\frac{50}{360} \times \pi \times 7^{2}\right) \qquad \text{award } 2/5 \quad \times \checkmark \times \times$$

$$18.8 \left(\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right) \qquad \text{award } 1/5 \quad \times \times \times \checkmark \times$$

$$153.9 \left(\pi \times 7^{2}\right) \qquad \text{award } 0/5$$

The fifth mark is only available when the area of triangle MON is calculated using trigonometry.