N5 EXPRESSIONS & FORMULAE 1.3

This resource is to support pupils in passing the appropriate National 5 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course.

In addition the questions from **Paper 1 (P1)** should be completed **without** the use of a calculator and questions from **Paper 2 (P2)** permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 5 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment Standard	Sub skills	Section A – Question Number
Expressions & Formulae 1.3	reducing an algebraic fraction to its simplest form	Q1
Applying algebraic skills to algebraic fractions	applying one of the four operations to algebraic fractions	Q2 (adding) Q3 (subtracting) Q4 (multiplying) Q5 (dividing)

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A \text{ or } \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Area of a triangle:
$$A = \frac{1}{2}ab\sin C$$

Volume of a sphere:
$$V = \frac{4}{3}\pi r^3$$

Volume of a cone:
$$V = \frac{1}{3}\pi r^2 h$$

Volume of a pyramid:
$$V = \frac{1}{3}Ah$$

Standard deviation:
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}}$$
, where n is the sample size.

Section A

Section A

Q		Marks	
1 P1	Write, $\frac{(2y+1)^2(3p-4)^3}{(3p-4)(2y-1)}$ in its simplest form	1	
	Write, $(3p-4)(2y-1)$ in its simplest form		
	when $p \neq \frac{4}{3}$ and $y \neq \frac{1}{2}$		
2 P1	5. Express as a single fraction in its simplest form	2	
	$\frac{1}{p} + \frac{2}{(p+5)}.$		
3 P2	9. Express $\frac{7}{x+5} - \frac{3}{x}$	3	
	when $x \neq -5$, $x \neq 0$, as a single fraction in its simplest form.		
4 P1	Write as a single fraction: $\frac{3q}{2p} \times \frac{6t}{10p}$	2	
5 P1	Write as a single fraction: $\frac{3q}{2p} \div \frac{6t}{10p}$	2	

Section A

MARKING SCHEME

	Sectio	n A - Marking	Sch	eme	
1	• Reduce to simplest form $\frac{(2y+1)^2(3p-4)^2}{(2y-1)}$			4)2	
2	Notes:	Ans: $\frac{3p+5}{p(p+5)}$ • common denominator • simplified numerator	ae correct a	• $\frac{\dots}{p(p+5)}$ or $\frac{\dots}{p^2+5p}$ • $\frac{3p+5}{\dots}$	2KU
3	Question 9.	Expected Answer(s) Give one mark for each • Ans: $\frac{4x-15}{x(x+5)}$ • 1 correct common denominator (or correct numerator) • 2 consistent numerator (or denominator) • 3 simplify	Max Mark 3	Illustrations of evidence for awarding a mark at each • • $^1x(x+5)$ or $7x-3(x+5)$ • $^2\frac{7x-3(x+5)}{x(x+5)}$ • $^3\frac{4x-15}{x(x+5)}$	
4	Notes: 1. Correct answer without working award $3/3$ 2. For $\frac{7x}{x(x+5)} - \frac{3(x+5)}{x(x+5)}$ award $2/3 \checkmark \checkmark \times$ 3. For subsequent incorrect working, the final mark is not available. • Multiply numerators and denominators $\frac{3q \times 6t}{2p \times 10p}$				
	• Correct answer $\frac{18qt}{20p^2} = \left(\frac{9qt}{10p^2}\right)$				

5

- Multiply by inversion of fraction $\mathbf{X} \frac{10p}{6t}$
- Correct answer $\frac{30pq}{12pt} = \left(\frac{5q}{6t}\right)$

Section B

Section B

Paper 1 Questions

Q			Marks
1	13.	A new fraction is obtained by adding x to the numerator and denominator	3 (2.1)
		of the fraction $\frac{17}{24}$.	(=:=)
		This new fraction is equivalent to $\frac{2}{3}$.	
		Calculate the value of x .	

No Paper 2 Questions

Section B

MARKING SCHEME

Section B - Marking Scheme

Marking Scheme

Paper 1

Q				Marks
1	13	algebraic method		
		Ans: $x = -3$		
		• strategy	$\bullet \frac{17+x}{24+x}$	
		• processing	$\bullet \frac{17+x}{24+x} = \frac{2}{3}$	
		• solution	• x = -3 3RE	