N5 APPLICATIONS 1.2

This resource is to support pupils in passing the appropriate National 5 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course.

In addition the questions from Paper $1(P 1)$ should be completed without the use of a calculator and questions from Paper $2(P 2)$ permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 5 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment	Sub skills	Section A - Question Number		
Applications $\mathbf{1 . 2}$	adding or subtracting two- dimensional vectors using directed geometric skills to vectors	line segments determining the coordinates of a point from a diagram representing a 3D object adding or subtracting two- or three-dimensional vectors using components	Q3 Q4 (adding)	Q2 (subtracting)
:---				

FORMULAE LIST

The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A \text { or } \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Area of a triangle:
$A=\frac{1}{2} a b \sin C$

Volume of a sphere: $V=\frac{4}{3} \pi r^{3}$

Volume of a cone:

$$
V=\frac{1}{3} \pi r^{2} h
$$

Volume of a pyramid:

$$
V=\frac{1}{3} A h
$$

Standard deviation: $s=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\Sigma x^{2}-(\Sigma x)^{2} / n}{n-1}}$, where n is the sample size.

Section A

Section A

$\begin{array}{\|l\|} \hline \mathbf{3} \\ \text { P2 } \end{array}$	2. The diagram shows a cube placed on top of a cuboid, relative to the coordinate axes. A is the point $(8,4,6)$. Write down the coordinates of B and C.	2
$\begin{array}{\|l\|} \hline \mathbf{4} \\ \hline \end{array}$	4. Find the resultant vector $2 \boldsymbol{u}+\boldsymbol{v}$ when $\boldsymbol{u}=\left(\begin{array}{r}-2 \\ 3 \\ 5\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{r}0 \\ -4 \\ 7\end{array}\right)$. Express your answer in component form.	2
$\begin{array}{\|l\|} \hline \mathbf{P} \\ \hline \end{array}$	4. Find the resultant vector $2 \boldsymbol{u}-\boldsymbol{v}$ when $\boldsymbol{u}=\left(\begin{array}{r}-2 \\ 3 \\ 5\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{r}0 \\ -4 \\ 7\end{array}\right)$. Express your answer in component form.	2
$\begin{aligned} & \hline 6 \\ & \text { P2 } \end{aligned}$	7) Vector $\mathbf{u}=\binom{-1}{2}$ and vector $\mathbf{v}=\binom{-2}{4}$. Calculate $\|4 u+3 v\|$.	

	Section A - MARKING SCHEME			
1	- Draws 2b - Applies head to tail when adding - Draws the resultant vector			3
2	- Draws 2b - Changes direction for -2b - Applies head to tail when adding - Draws the resultant vector			4
3	Question Expected Answer(s) Give one mark for each 2. Ans: B (8, 4, 10), C (4, 0, 10) $\bullet 1$ state coordinates of B $\cdot 2$ state coordinates of C Notes: 1. For eg $B(8,4,9)$ leading to $C(4,0,9)$ 2. The maximum mark available is $1 / 2$ where (a) brackets are omitted (b) answers are given in component form		Illustrations of evidence for awarding a mark at each • - ${ }^{1}(8,4,10)$ $\bullet^{2}(4,0,10)$	

Section B

There are no past paper questions involving the topic of Vectors as this is a new topic to the National 5 course.

