National 5: Expressions and Formulae

Le	arning Intention I can simplify and carry out calculations using surds.		
Su	iccess Criteria	0	8
•	I know how to find the square, square root, cube or cube root of numbers. Evaluate $3^2 \sqrt{49} 10^3 \sqrt[3]{64}$		
•	I can identify surds.		
•	I know that $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$, $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$, $\sqrt{a} \times \sqrt{a} = a$ and $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.		
•	I know how to fully simplify surds. Show that $\sqrt{75} = 5\sqrt{3}$ and $\sqrt{72} = 6\sqrt{2}$. Simplify $\sqrt{\frac{49}{100}}$		
•	I can add and subtract surds. Simplify $2\sqrt{5} + 7\sqrt{5}$, $\sqrt{75} - \sqrt{45}$ and $\sqrt{75} - \sqrt{27}$. Express $\sqrt{12} - \sqrt{3} + \sqrt{48}$ as a surd in its simplest form.		
•	I can multiply surds.		
	Expand and simplify $\sqrt{3}(\sqrt{3}-1) = \sqrt{2}(3-\sqrt{6}) = (2+\sqrt{2})(3+\sqrt{2}) = (2\sqrt{5})(2\sqrt{5}-1)$		
•	I know how to rationalise the denominator of a fraction of the form $rac{a}{\sqrt{b}}$.		
	Express $\frac{3}{\sqrt{5}}$ with a rational denominator.		
	EXTENSION		
•	I know how to rationalise the denominator of a fraction of the form $rac{a}{b\pm\sqrt{c}}$.		
	Express $\frac{3}{1+\sqrt{2}}$ with a rational denominator.		

Learning Intention I can simplify and evalu	ate expressio	ons using the	laws of	indices.						
Success Criteria								0	:	$\overline{\mathbf{O}}$
• I know that $3^4 = 3 \times 3 \times 3 \times 3$ and 3 is the base	number and	4 is the index	•							
• I know that $a^m \times a^n = a^{m+n}$	Simplify	$x^4 \times x^5$	$3x^7 \times$	$5x^2$						
• I know that $a^m \div a^n = a^{m-n}$	Simplify	$x^8 \div x^5$	$x^2 \div x$	x^{-3}						
• I know that $(a^m)^n = a^{mn}$	Simplify	$(2a^3)^4$								
• I know that $a^0 = 1$	Simplify	5 ⁰	$(3ab^2)$	$(2^{2})^{0}$						
• I know that $a^{-n} = \frac{1}{a^n}$	Rewrite wi	ith positive in	dices	x ⁻²	3y ⁻⁴					
• I know that $\frac{1}{a^{-n}} = a^n$	Rewrite wi	ith a positive	ndice	$\frac{2}{a^{-3}}$						
• I know that $a^{\frac{1}{n}} = \sqrt[n]{a}$	Evaluate	$125^{\frac{1}{3}}$	$81^{-\frac{1}{2}}$							
• I know that $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$	Evaluate	$16^{\frac{3}{4}}$	$8^{-\frac{2}{3}}$							
• I can simplify expressions of the form	$\frac{x^5 \times x^4}{x^{-2}}$	$6x^2 \times 2x^{-\frac{1}{3}}$		$\sqrt{x(x^3-\frac{2}{x})}$)	$\sqrt[3]{a}(\sqrt[3]{a})$	$-\frac{1}{\sqrt[3]{a}})$			

earning Intention I can carry out calculations using scientific notation.								
Success Criteria	0	() ()	8					
• I can write large and small numbers in scientific notation. $1820000 = 1 \cdot 82 \times 10^6$ $0 \cdot 00049 = 4 \cdot 9 \times 10^{-4}$								
• I can carry out calculations using scientific notation. Calculate $(1 \cdot 2 \times 10^5) \times (9 \times 10^7)$								
I can use my calculator to carry out calculations using values in scientific notation.								
There are 5×10^9 red blood cells in 1 millilitre of blood. The average person has 5.5 litres of blood.								
How many red blood cells does the average person have in their blood? Give your answer in scientific notation.								

Learning Intention I can simplify algebraic expressions involving the expansion of brackets.									
Success Criteria		8							
• I know how to expand a bracket and simplify: $3+4(b-$	-2) 4c - (c - 3) 4(2t + 1) + 5(3t - 2)								
• I know how to expand a bracket of the form: $2t(3t+1)$) $7g(6-g)$								
• I know how to expand pairs of brackets with 2 linear exp	pressions: $(x+3)(x+5)$ $(4y+1)(3y-2)$ $(3x-4)^2$								
I know how to expand brackets with a linear and a quad	ratic expression: $(4y+1)(3y^2+5y-2)$								

Learning Intention I can fa	ctorise an algebraic e	expression.				
Success Criteria					0	8
I can factorise an expression	by finding the Highes	st Common Factor (HCF).			
Factorise the following:	21 - 35x	$8a^2b-12ac$				
• I know how to factorise an ex	pression using a diff	erence of two squa	res.			
Factorise the following:	$x^2 - y^2$	$t^2 - 36$	$9x^2 - y^2$	$64 - 49y^2$		
• I know how to factorise an ex	pression using a com	nmon factor and a d	difference of two so	luares.		
Factorise the following:	$5x^2 - 20y^2$					
I know that a trinomial expre	ssion is of the form a	$ax^2 + bx + c$.				
• I know how to factorise a trir	nomial expression of	the form $x^2 + bx + c$	с.			
Factorise the following:	$x^2 + 6x + 8$	$x^2 - x - 6$	$x^2 + 5x - 6$	$x^2 - 5x - 6$		
I know how to factorise a trip	nomial expression of	the form $ax^2 + bx$	+ <i>c</i> .			
Factorise the following:	$2x^2 + 7x + 3$	$3x^2 - 10x - 8$	$3x^2 - 16x + 5$			

Learning Intention I can complete the square in a quadratic expression with unitary x^2 coefficient.			
Success Criteria		(;)	8
• I know how to express $x^2 + bx + c$ in the form $(x + p)^2 + q$.			
Express $x^{2} + 6x - 2$ and $x^{2} - 3x + 4$ in the form $(x + p)^{2} + q$.			

Learning Intention I can reduce an algebraic fraction to its simplest form.								
Success Criteria							() ()	8
• I can simplify fractions.	Simplify the following:	$\frac{7}{21}$	$\frac{27}{63}$					
• I can simplify algebraic fractions.	Simplify the following:	$\frac{x^2}{x^5}$	$\frac{10y^7}{15y^4}$	$\frac{(y+2)(y-3)}{(y-3)(y-4)}$	$\frac{x^2 - 4}{2x + 4}$			

Learning Intention I can carry out calculations with algebraic fractions.									
Success Criteria									
• I can add, subtract, mul	tiply and divide fra	actions.							
Evaluate	$3\frac{2}{5}+1\frac{1}{3}$,	$2\frac{3}{4} \times 1\frac{1}{5}$	and	$2\frac{1}{3} \div 1\frac{3}{4}.$					
• I can add and subtract a	lgebraic fractions.								
Simplify the following:	$\frac{x}{2}-\frac{x}{3}$,	$\frac{5}{x} + \frac{2}{y}, \qquad \frac{t}{x} - \frac{3}{y}$	and	$\frac{x+1}{2} + \frac{x-1}{3}.$					
I can multiply and divide algebraic fractions.									
Simplify the following:	$\frac{t}{5} \times \frac{3}{y}$,	$\frac{t}{15} \times \frac{25}{t^2}$	and	$\frac{x}{7} \div \frac{x^3}{14}.$					

