N4 RELATIONSHIPS 1.3

This resource is to support pupils in passing the appropriate National 4 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course. In addition the questions from Paper 1 (P1) should be completed without the use of a calculator and questions from Paper 2 (P2) permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 4 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment	Sub skills	Section A - Question Number
Relationships $\mathbf{1 . 3}$	The sub-skills are:	
Applying trigonometric skills to right- angled triangles	calculating a side in a right-angled triangle	Q1
	calculating an angle in a right- angled triangle	Q2

FORMULAE LIST

Circumference of a circle:	$\boldsymbol{C}=\pi \boldsymbol{d}$
Area of a circle:	$\boldsymbol{A}=\pi \boldsymbol{r}^{2}$
Curved surface area of a cylinder:	$\boldsymbol{A}=2 \pi r \boldsymbol{h}$
Volume of a cylinder:	$\boldsymbol{V}=\pi \boldsymbol{r}^{2} \boldsymbol{h}$
Volume of a triangular prism:	$\boldsymbol{V}=\boldsymbol{A} \boldsymbol{h}$

Theorem of Pythagoras:

Trigonometric ratios
in a right angled
triangle:

$$
\begin{aligned}
& \tan x^{\circ}=\frac{\text { opposite }}{\text { adjacent }} \\
& \sin x^{\circ}=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \boldsymbol{\operatorname { c o s }} x^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }}
\end{aligned}
$$

Gradient:

Gradient $=\frac{\text { vertical height }}{\text { horizontal distance }}$

Section A

| Q | | Marks |
| :--- | :--- | :--- | :--- |
| Q1 | 4. The entrance to a building is by a ramp as shown in the diagram below. | |
| The length of the ramp is 180 centimetres. | | |
| The angle between the ramp and the ground is 12°. | 4 | |

12. A boat elevator is used to take a boat from the lower canal to the upper canal.

The boat elevator is in the shape of a triangle.
The length of the hypotenuse is 109 metres.
The height of the triangle is 45 metres.

Calculate the size of the shaded angle x°.

N4-REL 1.3 - Remediation

Section A

MARKING

Section A - Marking Scheme

Section B

Section B - Paper 1 - No questions

Section B - Paper 2 - Questions

Q		Marks
1	11. The shaded part of a garden light is triangular. - the triangle is right angled - the sloping edge is 20 centimetres long - the angle between the base and the sloping edge is 65°. Calculate the value of x.	3

10. Ahmed is making a frame to strengthen a stairway in a shopping centre.

He needs to know the angle the stairway makes with the floor, as shown in the diagram below.

The hypotenuse of the frame is $5 \cdot 2 \mathrm{~m}$ and the horizontal distance is 4.5 m .

Calculate the size of the shaded angle x°.
9. Larry has invented a device for checking that ladders are positioned at the correct angle.
His design for the device is given below.
Calculate the size of the shaded angle.

13. A surveyor has to calculate the height of a mobile phone mast.
From a point 20 metres from the base of the mast, the angle of elevation to the top is 52°.
Calculate the height of the mobile phone mast.
Round your answer to 1 decimal place.
Do not use a scale drawing.

5

12. Belfast has a leaning clock tower.

The leaning of the clock tower is shown in the diagram below.

4 feet

Calculate the size of the shaded angle.

6
13. Kate is flying a kite.

She lets out 32 metres of string, pulled tight, at 65° to the ground.

Calculate the height of the kite as shown in the diagram.
Do not use a scale drawing.
12. Calculate the height, h metres, of the trapezium shown below. Do not use a scale drawing.

8
8. A ladder which is 5.2 metres long is placed against a wall.

The foot of the ladder is 1.6 metres from the wall.
The size of the angle between the ladder and the ground is x°.
Calculate x.
Do not use a scale drawing.

9. A submarine, \mathbf{S}, dives for 300 metres at an angle of 24° to the surface.

Calculate the depth of the submarine as shown in the diagram. Do not use a scale drawing.

N4-REL 1.3 - Remediation

Section B

MARKING

 SCHEME
Section B - Paper 1 - No Marking Scheme

9 \begin{tabular}{l|l|lll}
Ans: $\boldsymbol{x}=\mathbf{7 5 \cdot 9 6} \ldots\left({ }^{\circ}\right)$

$\bullet \bullet^{1}$ \& valid trig ratio

\bullet^{2} \& | correct value for $\tan x^{\circ}$ or |
| :--- |
| equivalent | \& | \bullet^{1} | $\tan x^{\circ}=12 / 3$ | |
| :--- | :--- | :--- |
| \bullet^{3} | $\tan ^{-1}(12 / 3)$ or $\tan x^{\circ}=4$ | |
| \bullet^{3} | | $x=75 \cdot 96 \ldots\left({ }^{\circ}\right)$ |

\hline
\end{tabular}

NOTES:

(i) Final answers
with working
3/3

3/3

3/3
3/3
2/3
without working
$1 / 3$
1/3
$1 / 3$
1/3
$0 / 3$
(ii) Where final answer comes from $\sin x^{\circ}=3 / 12$ or $\cos x^{\circ}=3 / 12$ the maximum mark available is $1 / 3$
(iii) Credit should be given where a more laborious method is used.
(iv) Ignore incorrect rounding

$\mathbf{3}$		
	\bullet^{1}	$\sin x^{\circ}=4 / 113$
	\bullet^{2}	$\sin x^{\circ}=0.035 \ldots$
(KU)	\bullet^{3}	$x^{\circ}=2.02^{\circ}$

Ans: $2.02\left(^{\circ}\right)$

- ${ }^{1} \quad$ valid trig ratio
- ${ }^{2} \quad$ correct value for $\sin x^{\circ}$
correct angle
Notes:
(i) Final Answers $2(\cdot 02)$
$0 \cdot 035[\mathrm{RAD}]$
$2 \cdot 25$ [GRAD]
with working
3/3
3/3
3/3
without working
0/3
0/3
0/3
(ii) Where the final answer comes from $\cos x^{\circ}=4 / 113$ leading to 88° or $\tan x^{\circ}=4 / 113$ leading to $2 \cdot 027$... the maximum mark available is $1 / 3$
(iii) candidates who use tan can also obtain a final answer of $2(\cdot 027)$ - award $1 / 3$
(iv) credit should be given where a more laborious method is used
(v) ignore incorrect rounding

6	13	Ans: 29 m - \quad use correct sine ratio: $\sin 65^{\circ}=\mathrm{h} / 32$ - ${ }^{2}$ know how to solve equation: $\mathrm{h}=32 \times \sin 65^{\circ}$ -3 carry out trig. calculation: 29 (.0018....)	3	1. Correct answer without working award $2 / 3$ 2. Do not penalise inadvertent use of radians or grads 26(-458...) (radians used) award $3 / 3$ $27(-284 \ldots$...) (grads used) award $3 / 3$ 3. Disregard premature rounding or truncation eg $32 \times \sin 65^{\circ}=32 \times 0.9=28.8$ award $3 / 3$ 4. Where an incorrect trig ratio is used, working should be followed through with the possibility of awarding $2 / 3$. [Disregard premature rounding or truncation] (a) $32 \times \cos 65^{\circ}=13.5(23 \ldots)$ award 2/3 $\quad \times \checkmark \checkmark$ (b) $32 \times \cos 65^{\circ}=32 \times 0.4=12.8$ award 2/3 $\times \checkmark \checkmark$ (c) $32 \times \tan 65^{\circ}=68.6(24 \ldots)$ award 2/3 $\times \checkmark \checkmark$ (d) $32 \times \tan 65^{\circ}=32 \times 2.1=67.2$ award 2/3 $\quad \times \checkmark \checkmark$

Ans: 6.9 m (or 7m)

- ${ }^{1}$ find base of triangle: $17-11=6$
- ${ }^{2}$ use correct \tan ratio: $\tan 49^{\circ}=h / 6$
-3 know how to solve equation: $\mathrm{h}=6 \times \tan 49^{\circ}$
-4 carry out trig. calculation: 6.9(0...)

1. Correct answer without working award 3/4
Be aware $\tan 49=h / 6$

$$
\begin{aligned}
& \tan ^{-1}(6 / 49)=6.9(8 \ldots) \\
& \checkmark \checkmark \times \checkmark
\end{aligned}
$$

2. Do not penalise inadvertent use of radians or grads
$-19(\cdot 0 \ldots)$ (radians used) award 4/4
5(-184 ...) (grads used) award 4/4
3. Where an incorrect trig ratio is used, working should be followed through with the possibility of awarding $3 / 4$.
(a) $6 \times \cos 49^{\circ}=3.9(36 \ldots)$ award 3/4 $\checkmark \times \checkmark \checkmark$
(b) $6 \times \sin 49^{\circ}=4.5(28 \ldots)$ award $3 / 4 \checkmark \times \checkmark \checkmark$
4. In awarding the $4^{\text {th }}$ mark, the trig. ratio should not be rounded to any less than 2 decimal places eg
(a) $6 \times \tan 49^{\circ}=6 \times 1.15=6.9$ award 4/4
(b) $6 \times \tan 49^{\circ}=6 \times 1.2=7.2$ award $3 / 4 \checkmark \checkmark \checkmark x$
∞
Ans: 72°

- ${ }^{1}$ use correct cosine ratio:
$\cos x^{\circ}=1 \cdot 6 / 5-2$
- ${ }^{2}$ know how to find x :
$\cos ^{-1}(1 \cdot 6 / 5 \cdot 2)$ or $\cos ^{-1} 0 \cdot 307 \ldots$
- ${ }^{3}$ carry out inverse trig. calculation: 72(-07....)

1. Correct answer without working award $2 / 3$
2. Do not penalise inadvertent use of radians or grads
1.3 or $1 \cdot 2(5 \ldots$) (radians used) award $3 / 3$ $80 \cdot 1$ or 80.08 (...) (grads used) award $3 / 3$
3. Where an incorrect trig ratio is used, working should be followed through with the possibility of awarding $2 / 3$.
(a) $\sin ^{-1}\left({ }^{1 \cdot 6} / 5 \cdot 2\right)=18$ or $17.9(\ldots)$ award $2 / 3 \times \checkmark \checkmark$
(b) $\tan ^{-1}(1 \cdot 6 / 5 \cdot 2)=17 \cdot 1(0 \ldots)$
award $2 / 3 \times \checkmark \checkmark$
(c) $\tan ^{-1}\left(\frac{5 \cdot 2}{1 \cdot 6}\right)=73$ or $72 \cdot 9$ or $72.8(9 \ldots)$ award $2 / 3 \times \checkmark \checkmark$
4. In awarding the $3^{\text {rd }}$ mark, $1.6 / 5 \cdot 2$ should not be rounded or truncated to any less than two decimal places
(a) $\cos ^{-1} 0 \cdot 31=72$ or $71 \cdot 9(\ldots)$
(b) $\cos ^{-1} 0.3(0)=73$ or $72.5($) award $2 / 3 \vee \checkmark x$
5. Do not award $3^{\text {rd }}$ mark if there is invalid subsequent working
e.g. $\cos ^{-1}\left({ }^{1-6} / 5 \cdot 2\right)=72 \rightarrow \sqrt{ } 72=8.485 \ldots$
award $2 / 3 \checkmark \checkmark x$

Section B - Paper 2 - Marking Scheme

N4-REL 1.3 - Remediation

N4-REL 1.3 - Remediation

