N4 RELATIONSHIPS 1.2

This resource is to support pupils in passing the appropriate National 4 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and *may* include other areas from the course. In addition the questions from **Paper 1** (P1) should be completed **without** the use of a calculator and questions from **Paper 2** (P2) permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 4 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment Standard	<u>Sub skills</u>	Section A – Question Number
Relationships	The sub-skills are:	O1 (Finding the University)
1.2 Applying geometric skills to	using Pythagoras theorem	Q1 (Finding the Hypotenuse) Q2 (Finding a shorter side)
sides and angles of shapes	using a fractional scale factor to enlarge or reduce a shape	Q3 (Enlarge) Q4 (Reduce)
	using parallel lines	Q5
	symmetry and circle properties to calculate angles	Q6

FORMULAE LIST

Section A

Q3 P2 2. John has drawn this design.

Using a scale factor of 2, draw an enlargement of John's design on the grid below.

3

Q5 In the diagram below, lines CD and EF are parallel.

Lines AB, GH and CD intersect at the point J. Lines AB and EF intersect at the point K and lines EF and GH intersect at the point L. as shown.

Lines AB and EF intersect at the point K as shown.

Angle AJG is 72° and angle DJB is 67° . Calculate the size of angle GLF°.

1

Section A

MARKING SCHEME

8	Ans: 20.7 (m)
	• ¹ Correct use of Pythagoras' $\bullet^1 = 4 \cdot 3^2 + 2 \cdot 9^2$ Theorem
	• ² Correct Pythagoras calculation \bullet^2 26.9
	• ³ Correct square root of above • ³ 5.18
	• ⁴ Correct multiplication of above by 4 \bullet^4 P = 20 · 7 (m) 4K
Note:	
	For a final answer of 20.7 or 20.8 (4×5.2) without working – award 3/4
_	
5	Ans: 27.5(m) 4
	• ¹ correctly use Pythagoras' theorem • ¹ $34^2 = x^2 + 20^2$ or equivalent
	• ² correct Pythagoras calculation $e^2 = 756$
	• ³ correct square root of above • ³ $x = 27.495$
	• ⁴ correct rounding to 1 decimal • ⁴ $x = 27.5$
	point (KU)
Notes:	
Notes: (i)	Alternative Strategy
Notes: (i)	Alternative Strategy ¹ correct trig statement ² correct calculation of angle (54° or 36°) ³ correct calculation of length
Notes: (i)	Alternative Strategy ¹ correct trig statement ² correct calculation of angle (54° or 36°) ³ correct calculation of length ⁴ correct rounding to 1 decimal place
Notes: (i) (ii)	Alternative Strategy • 1 correct trig statement • 2 correct calculation of angle (54° or 36°) • 3 correct calculation of length • 4 correct rounding to 1 decimal place Final Answers with working without working 27.5 $4/4$ $3/4$ 30.4 $(34^2 \pm 20^2)$ $3/4$

N4 - REL 1.2 - Remediation

Section B

Section B – Paper 1 – Questions

Section B – Paper 2 – Questions

N4 - REL 1.2 - Remediation

Section B

MARKING SCHEME

Section B – Paper 1 – Marking Scheme

				Mar
Questi No	on	Give 1 mark for each •	Illustrations of evidence for awarding each mark	3
9	Ans:	143°		
	•1	using $\angle DAB = 34^{\circ}$ to calculate $\angle ABD$	• ¹ $\angle ABD = \frac{1}{2} (180 - 34)^\circ = 73^\circ$	
	• ²	using $\angle ABC = 90^{\circ}$ to calculate $\angle CBD$	• ² $\angle CBD = 90 - 73 = 17^{\circ}$	
	• ³	correct subtraction of angles BCD and CBD from 180°	• ³ $\angle BDC = 180 - (17 + 20) = 143^{\circ}$	
			3R	
Questi No	ion	Give 1 mark for each •	Illustrations of evidence for awarding each mark	3
10	Ans:	21(°)		
10	Ans: • ¹	21(°) knowing to calculate angle AOD	• ¹ $180 - (62 + 62)$	
10	Ans: • ¹ • ²	21(°) knowing to calculate angle AOD knowing to calculate angle BOC	• ¹ $180 - (62 + 62)$ • ² $180 - 56$	
10	Ans: • ¹ • ² • ³	21(°) knowing to calculate angle AOD knowing to calculate angle BOC correctly calculate angle BCO	• ¹ $180 - (62 + 62)$ • ² $180 - 56$ • ³ $180 - (124 + 35) = 21(^{\circ})$	
10	Ans: • ¹ • ² • ³	21(°) knowing to calculate angle AOD knowing to calculate angle BOC correctly calculate angle BCO	• ¹ $180 - (62 + 62)$ • ² $180 - 56$ • ³ $180 - (124 + 35) = 21(^{\circ})$ 3R	
10 NOTE:	Ans: • ¹ • ² • ³	21(°) knowing to calculate angle AOD knowing to calculate angle BOC correctly calculate angle BCO	• ¹ $180 - (62 + 62)$ • ² $180 - 56$ • ³ $180 - (124 + 35) = 21(^{\circ})$ 3R	
10 NOTE: (i	Ans: \bullet^1 \bullet^2 \bullet^3 (i) Final a 2^1	21(°) knowing to calculate angle AOD knowing to calculate angle BOC correctly calculate angle BCO	• 1 180 - (62 + 62) • 2 180 - 56 • 3 180 - (124 + 35) = 21(°) 3R ing without working $^{2/3}$	
10 NOTE: (i	Ans: • ¹ • ² • ³ (i) Final a 21 24 (from	21(°) knowing to calculate angle AOD knowing to calculate angle BOC correctly calculate angle BCO nswers with work 3/3 2/3	• 1 180 - (62 + 62) • 2 180 - 56 • 3 180 - (124 + 35) = 21(°) 3R ing without working $\frac{2/3}{0/3}$	

Question No	Give 1 mark for each •	Π	lustrations of evidence for awarding each mark
7	Ans: 95(°)	,	
	 use properties of isosceles triangle to find ∠BDC 	•	30°
	• ² use properties of isosceles triangle to find ∠ADB	•2	$(180^\circ - 50^\circ) \div 2 = 65^\circ$
	• ³ correct addition of angles	•3	$65^{\circ} + 30^{\circ} = 95(^{\circ})$
			3R
NOTES:			
(i)	Alternative strategy:		
• ¹	use $\angle BCA = \angle DCA$ to find $\angle DCA$	\bullet^1	$\angle DCA = \frac{1}{2} \times 120^\circ = 60^\circ$
• ²	use $\angle CAB = \angle CAD$ to find $\angle CAD$	• ²	$\angle CAD = \frac{1}{2} \times 50^\circ = 25^\circ$
• ³	correct calculation to find \angle CDA	•3	$\angle CDA = 180^{\circ} - (60^{\circ} + 25^{\circ}) = 95(^{\circ})$
(ii)	For a correct final answer without working		award 2/3

N4 - REL 1.2 - Remediation

4	 	1				
	10	Ans: 161(°)				
		• ¹ identify \leq BCD as right angle	• •1	Angle BCD = 90°		
		• ² use properties of a triangle to find < CBD	•2	$180^{\circ} - 90^{\circ} - 71^{\circ} = 19^{\circ}$		
		• ³ correct value of shaded angle <abc< th=""><th>•³</th><th>$180^{\circ} - 19^{\circ} = 161(^{\circ})$</th><th></th><th></th></abc<>	• ³	$180^{\circ} - 19^{\circ} = 161(^{\circ})$		
				3R		
	NOTE:	ł				3
	(i) Fin	al Answers With Work	ing	Without Working		
	161	3/3		1/3		
	142	(from $180 - 2 \times 71$) $2/3$		0/3		
5	Question	Marking Scheme	Max Mark	Illustrations of evidence for awarding a	ı	
		Give I mark for each •	Mark	mark at each •		
	9	Ans: 59 (°)	3			
		 angle ABC identified as right angle 		• ¹ 90		
		• ² calculate angle ABO		• ² 90 - 31 = 59		
		• ³ calculate angle BAO	(RE)	• ³ 59		
	Notes:	+	/	+		3
	(i)	Alternative Strategies • calculate angle BOC • calculate angle BOA • calculate angle BAO	•1 •2 •3	118 (180 - 31 - 31) 62 (180 - 118) 59		
		 ¹ know angle ABC is a right angle ² strategy (using triangle ABC) ³ calculate angle BAO 	• ¹ • ² • ³	90 180 - 90 - 31 59		
	(ii)	Final Answer with workin 59 3/3	ng	without working 2/3		

Section B – Paper 2 – Marking Scheme

Q				Marks
6	Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark •	
	5	Ans: 17 (cm) •1 Knows to find length of short side	• $26 - 18 = 8$	
		 Substituting correctly into Pythagoras theorem Knowing to find the square root of above 	• ² $PS^2 = 8^2 + 15^2$ • ³ $PS = \sqrt{289}$	
	Note:	• ⁴ All calculations correct within a valid strategy	• ⁴ PS = 17 (cm) $4R$	4
	11012.	Final Answerswith working 17 $4/4$ $30(.01)$ $(26^2 + 15^2)$ $3/4$ 23.4 $(18^2 + 15^2)$ $3/4$ 31.6 $(26^2 + 18^2)$ $1/4$ 289 $2/4$	without working 2/4 0/4 0/4 0/4 0/4 1/4	
7	8 A1	as: 3·3 (m)		
	•1	knowing to half base •1	$\frac{1}{2} \times 2 \cdot 4 \ (= 1 \cdot 2)$	
	•3	correct form of Pythagoras •	$h^2 = 3 \cdot 5^2 - 1 \cdot 2^2$	
	•4	correct calculation must include • ⁴ a square root	h = 3.3 (m)	Δ
			4K	-

Question No	Give 1 mark for each	• I	llustrations of evidence fo each mark	or awarding	
12	Ans: 26.8 (cm)				
	•1 knowing to find length of side	of short •1	$3 \div 2 = 1 \cdot 5$		
	• ² knowing to use Pythago	ras • ²	$x^2 = 5^2 + 1 \cdot 5^2$		
	• ³ correct Pythagoras calcu	ulation • ³	$x = 5 \cdot 2$		
	• ⁴ correct length calculatio	on • ⁴	$(5 \cdot 2 + 5 \cdot 2 + 3) \times 2 = 26 \cdot 8$	(cm) 4R	
NOTE:					
(i)	Final answers with 26.8 4/4	h working	without worki	ing	
	20.8		0/4		
			- / -		
	22 (from $5^2 - 3^2$) 2/4 26 (from $(5 + 5 + 3) \times 2$) 1/4		0/4 0/4		
	$\begin{array}{ll} 22 \ (\text{from } 5^2 - 3^2) & 2/4 \\ 26 \ (\text{from } (5 + 5 + 3) \times 2) & 1/4 \\ 12 \cdot 5 \ (\text{from } 5^2 - 1 \cdot 5^2) & 3/4 \end{array}$		0/4 0/4 0/4		
	$\begin{array}{l} 22 \ (\text{from } 5^2 - 3^2) & 2/4 \\ 26 \ (\text{from } (5 + 5 + 3) \times 2) & 1/4 \\ 12 \cdot 5 \ (\text{from } 5^2 - 1 \cdot 5^2) & 3/4 \end{array}$		0/4 0/4 0/4		
Question	$\begin{array}{c} 22 \ (\text{from } 5^2 - 3^2) & 2/4 \\ 26 \ (\text{from } (5 + 5 + 3) \times 2) & 1/4 \\ 12 \cdot 5 \ (\text{from } 5^2 - 1 \cdot 5^2) & 3/4 \end{array}$ Give 1 mark for each	1• I	0/4 0/4 0/4 (Ilustrations of evidence f each mark	or awarding	_
Question No	$\begin{array}{c} 22 \ (\text{from } 5^2 - 3^2) & 2/4 \\ 26 \ (\text{from } (5 + 5 + 3) \times 2) & 1/4 \\ 12 \cdot 5 \ (\text{from } 5^2 - 1 \cdot 5^2) & 3/4 \end{array}$ Give 1 mark for each	ı• I	0/4 0/4 0/4 Illustrations of evidence f each mark	or awarding	_
Question No 12	$\begin{array}{c} 22 \ (\text{from } 5^2 - 3^2) & 2/4 \\ 26 \ (\text{from } (5 + 5 + 3) \times 2) & 1/4 \\ 12 \cdot 5 \ (\text{from } 5^2 - 1 \cdot 5^2) & 3/4 \end{array}$ Give 1 mark for each Ans: 54·8(cm)	1• I	0/4 0/4 0/4 Illustrations of evidence f each mark	or awarding	
Question No 12	22 (from $5^{2} - 3^{2}$) 2/4 26 (from $(5 + 5 + 3) \times 2$) 1/4 12.5 (from $5^{2} - 1.5^{2}$) 3/4 Give 1 mark for each Ans: 54.8(cm) • ¹ knowing to halve base	• ¹	0/4 0/4 0/4 Illustrations of evidence f each mark	or awarding	
Question No 12	22 (from $5^2 - 3^2$) 2/4 26 (from $(5 + 5 + 3) \times 2$) 1/4 12.5 (from $5^2 - 1.5^2$) 3/4 Give 1 mark for each Ans: 54.8(cm) • ¹ knowing to halve base • ² correct Pythagoras statem	•• I •1 •1 • ²	0/4 $0/4$ $0/4$ Illustrations of evidence f each mark 35 $x^2 = 65^2 - 35^2$	or awarding	
Question No 12	22 (from $5^2 - 3^2$) 2/4 26 (from $(5 + 5 + 3) \times 2$) 1/4 12.5 (from $5^2 - 1.5^2$) 3/4 Give 1 mark for each Ans: 54.8(cm) • ¹ knowing to halve base • ² correct Pythagoras statem • ³ knowing to find square ro	h • I ent • ¹ ot • ³	$0/4$ $0/4$ $0/4$ $0/4$ Illustrations of evidence free ach mark 35 $x^2 = 65^2 - 35^2$ $\sqrt{3000}$	or awarding	
Question No 12	22 (from $5^2 - 3^2$)2/426 (from $(5 + 5 + 3) \times 2$)1/412.5 (from $5^2 - 1.5^2$)3/4Give 1 mark for eachAns: 54.8(cm)•1knowing to halve base•2correct Pythagoras statem•3knowing to find square ro•4all calculations correct	$\begin{array}{c c} \mathbf{h} \bullet & \mathbf{I} \\ \bullet \\ \mathbf{ent} & \bullet^1 \\ \bullet^2 \\ \mathbf{ot} & \bullet^3 \\ \bullet^4 \end{array}$	0/4 $0/4$ $0/4$ 1 Illustrations of evidence f each mark 35 $x^2 = 65^2 - 35^2$ $\sqrt{3000}$ $54.8(\text{cm})$	or awarding	
Question No 12	22 (from $5^{2} - 3^{2}$) 2/4 26 (from $(5 + 5 + 3) \times 2$) 1/4 12.5 (from $5^{2} - 1.5^{2}$) 3/4 Give 1 mark for each Ans: 54.8(cm) • ¹ knowing to halve base • ² correct Pythagoras statem • ³ knowing to find square ro • ⁴ all calculations correct	$\begin{array}{c c} \mathbf{h} \bullet & \mathbf{I} \\ \\ \mathbf{ent} & \mathbf{e}^1 \\ \mathbf{ent} & \mathbf{e}^2 \\ \mathbf{ot} & \mathbf{e}^3 \\ \mathbf{e}^4 \end{array}$	0/4 $0/4$ $0/4$ 1 Illustrations of evidence f each mark 35 $x^2 = 65^2 - 35^2$ $\sqrt{3000}$ $54.8(cm)$	or awarding 4R	
Question No 12 NOTES:	22 (from $5^{2} - 3^{2}$) 2/4 26 (from $(5 + 5 + 3) \times 2$) 1/4 12.5 (from $5^{2} - 1.5^{2}$) 3/4 Give 1 mark for each Ans: 54.8(cm) • ¹ knowing to halve base • ² correct Pythagoras statem • ³ knowing to find square ro • ⁴ all calculations correct	$\begin{array}{c c} \mathbf{h} \bullet & \mathbf{I} \\ \bullet & \bullet^1 \\ \bullet^1 \\ \bullet^2 \\ \bullet^3 \\ \bullet^4 \end{array}$	0/4 $0/4$ $0/4$ 1 Illustrations of evidence f each mark 35 $x^2 = 65^2 - 35^2$ $\sqrt{3000}$ $54 \cdot 8(\text{cm})$	or awarding 4R	
Question No 12 NOTES:	22 (from $5^2 - 3^2$) 2/4 26 (from $(5 + 5 + 3) \times 2$) 1/4 12.5 (from $5^2 - 1.5^2$) 3/4 Give 1 mark for each Ans: $54.8(cm)$ • ¹ knowing to halve base • ² correct Pythagoras statem • ³ knowing to find square ro • ⁴ all calculations correct	n • I ent • ¹ ot • ³ • ⁴	0/4 $0/4$ $0/4$ $0/4$ Illustrations of evidence f each mark 35 $x^2 = 65^2 - 35^2$ $\sqrt{3000}$ $54 \cdot 8(\text{cm})$ witho	or awarding 4R ut working	
Question No 12 NOTES:	22 (from $5^{2} - 3^{2}$) 2/4 26 (from $(5 + 5 + 3) \times 2$) 1/4 12 $\cdot 5$ (from $5^{2} - 1 \cdot 5^{2}$) 3/4 Give 1 mark for each Ans: 54 $\cdot 8$ (cm) • ¹ knowing to halve base • ² correct Pythagoras statem • ³ knowing to find square ro • ⁴ all calculations correct Final answers 54 $\cdot 8$ 55	$\mathbf{h} \cdot$ \mathbf{I} ent \mathbf{e}^1 ot \mathbf{e}^3 \mathbf{e}^4 with working $\frac{4/4}{4/4}$	0/4 $0/4$ $0/4$ $0/4$ Cllustrations of evidence f each mark 35 $x^2 = 65^2 - 35^2$ $\sqrt{3000}$ $54.8(cm)$ witho	or awarding 4R ut working 3/4 3/4	
Question No 12 NOTES:	22 (from $5^2 - 3^2$) 2/4 26 (from $(5 + 5 + 3) \times 2$) 1/4 12 $\cdot 5$ (from $5^2 - 1 \cdot 5^2$) 3/4 Give 1 mark for eacl Ans: $54 \cdot 8$ (cm) • ¹ knowing to halve base • ² correct Pythagoras statem • ³ knowing to find square ro • ⁴ all calculations correct Final answers $54 \cdot 8$ 55 $73 \cdot 8 (65^2 + 35^2)$	h • I ent •1 ot •3 •4 •4 with working 4/4 4/4 3/4	0/4 $0/4$ $0/4$ 1 Illustrations of evidence f each mark 35 $x^2 = 65^2 - 35^2$ $\sqrt{3000}$ $54.8(cm)$ witho	or awarding 4R ut working 3/4 3/4 0/4	

Г

Que N	stion Io	Give 1 n	nark for each •	I	llustrations of evidence for av each mark	varding
7	Ans:	: 126(·5) (ci	n)			
	•1	finding len	gth of short side	• ¹	230 - 190 (= 40)	
	• ²	correct Pyt	hagoras statement	• ²	$120^2 + 40^2$	
	•3	knowing to	calculate square root	•3	√16 000	
	•4	all calculati right angled	ions correct, within a d triangle	•4	126(·5) (cm)	4R
NOT	E:					
(i)	Final Answ	wers	With Working		Without Working	
	126(.5)		4/4		2/4	
	113.1 (120	$^{2}-40^{2}$)	3/4		0/4	
	259.4 (230	$^{2} + 120^{2}$)	3/4		0/4	
	224.7 (190	$^{2} + 120^{2}$)	3/4		0/4	
	196-2 (230	$^{2}-120^{2}$)	2/4		0/4	
					0/4	