N4 RELATIONSHIPS 1.2

This resource is to support pupils in passing the appropriate National 4 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course. In addition the questions from Paper 1 (P1) should be completed without the use of a calculator and questions from Paper 2 (P2) permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 4 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

$\underline{\text { Unit Assessment }}$	Sub skills	Section A - Question Number		
Relationships $\mathbf{1 . 2}$ Applying geometric skills to sides and angles of shapes	The sub-skills are: using Pythagoras' theorem	using a fractional scale factor to enlarge or reduce a shape		
using parallel lines (Finding the Hypotenuse)				
Q2 (Finding a shorter side)			\quad Q3 (Enlarge)	Q4 (Reduce)
:---				

FORMULAE LIST

Circumference of a circle:	$\boldsymbol{C}=\pi \boldsymbol{d}$
Area of a circle:	$\boldsymbol{A}=\pi r^{2}$
Curved surface area of a cylinder:	$\boldsymbol{A}=2 \pi r \boldsymbol{h}$
Volume of a cylinder:	$\boldsymbol{V}=\pi \boldsymbol{r}^{2} \boldsymbol{h}$
Volume of a triangular prism:	$\boldsymbol{V}=\boldsymbol{A} \boldsymbol{h}$

Theorem of Pythagoras:

Trigonometric ratios
in a right angled
triangle:

$$
\begin{aligned}
& \tan x^{\circ}=\frac{\text { opposite }}{\text { adjacent }} \\
& \sin x^{\circ}=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos x^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }}
\end{aligned}
$$

Gradient:

Gradient $=\frac{\text { vertical height }}{\text { horizontal distance }}$

Section A

Q1		Marks
8. ABCD is a rhombus.		
$\mathrm{AE}=4.3$ metres and $\mathrm{BE}=2.9$ metres.		
Calculate the perimeter of the rhombus.		

Q2
P2
5.

Alison's garden is in the shape of a right angled triangle.
She measured two sides of the garden.
Calculate the length, x, of the third side of her garden.
Round your answer to one decimal place.
Do not use a scale drawing.
2. John has drawn this design.

Using a scale factor of 2 , draw an enlargement of John's design on the grid below.

										1			
						\qquad							

Q4
3. Draw this shape on the grid below.

Make each of its lines half as long.

Q5 In the diagram below, lines CD and EF are parallel.
Lines AB, GH and CD intersect at the point J . Lines AB and EF intersect at the point K and lines EF and GH intersect at the point L . as shown.

Lines AB and EF intersect at the point K as shown.

Angle AJG is 72° and angle DJB is 67°. Calculate the size of angle GLF ${ }^{\circ}$.

Q6
P1 9.

In the diagram above:

- O is the centre of the circle
- AB is a tangent to the circle at T
- angle $\mathrm{BTC}=70^{\circ}$.

Calculate the size of the shaded angle TOC.

Section A

MARKING

Q		Marks
Q1		4
Q2	 Notes: (i) Alternative Strategy - ${ }^{1}$ correct trig statement - ${ }^{2}$ correct calculation of angle (54° or $\left.36^{\circ}\right)$ - ${ }^{3}$ correct calculation of length - ${ }^{4}$ correct rounding to 1 decimal place (ii) Final Answers with working without working $39 \cdot 4\left(34^{2}+20^{2}\right)$ 4/4 3/4 $0 / 4$	4

Section A - Marking Scheme

N4 - REL 1.2 - Remediation

Section B

Section B - Paper 1 - Questions

10.

In the diagram above:

- $A B$ is a diameter of the circle with centre O
- OC intersects the circle at D
- Angle $\mathrm{ABC}=35^{\circ}$
- Angle BAD $=62^{\circ}$

Calculate the size of the shaded angle.

3	7. In the diagram: - ABCD is a kite - Angle DAB $=50^{\circ}$ - Angle $\mathrm{DBC}=30^{\circ}$ Calculate the size of shaded angle ADC.	3
4	10. The diagram above shows a semi-circle with BD as diameter. - C lies on the circumference - In triangle BCD , angle CDB is 71° - AD is a straight line Calculate the size of the shaded angle ABC.	3

9.

The diagram above shows:

- $\quad \mathrm{AC}$ is a diameter of a circle with centre O
- B lies on the circumference
- angle $\mathrm{OBC}=31^{\circ}$.

Calculate the size of the shaded angle BAO.

Section B - Paper 2 - Questions

Q		Marks
6	5. Lewis is designing a bird box for his garden. The dimensions for the side of the box are shown in the diagram below. Calculate the length of side PS. Do not use a scale drawing.	4

8. A steel plate in the shape of an isosceles triangle is used to strengthen a bridge.

The dimensions of the isosceles triangle are shown below.

Calculate the height of the steel plate.
Do not use a scale drawing.
12. An earring in the shape of an isosceles triangle is made from silver wire.

The dimensions of the earring are shown on the diagram below.

Calculate the length of silver wire needed to make a pair of earrings.
Do not use a scale drawing.
12. A warning sign is in the shape of an isosceles triangle.

Calculate the height of the sign.
7. Maggie has bought a garden shed.

The dimensions for one side of the shed are shown in the diagram below.

Calculate the length of ST.

Section B

SCHEME

Section B - Paper 1 - Marking Scheme

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
7	Ans: $95\left({ }^{\circ}\right)$ - ${ }^{1}$ use properties of isosceles triangle to find $\angle \mathrm{BDC}$ - ${ }^{2} \quad$ use properties of isosceles triangle to find $\angle \mathrm{ADB}$ -3 correct addition of angles	$\begin{aligned} & \text {-1 } 30^{\circ} \\ & \text { - } \quad\left(180^{\circ}-50^{\circ}\right) \div 2=65^{\circ} \\ & \text { • }^{3} \quad 65^{\circ}+30^{\circ}=95\left(^{\circ}\right) \end{aligned}$

NOTES:

(i) Alternative strategy:

- 1 use $\angle \mathrm{BCA}=\angle \mathrm{DCA}$ to find $\angle \mathrm{DCA}$
- $1 \quad \angle \mathrm{DCA}=1 / 2 \times 120^{\circ}=60^{\circ}$
- \quad use $\angle \mathrm{CAB}=\angle \mathrm{CAD}$ to find $\angle \mathrm{CAD}$
- $2 \quad \angle \mathrm{CAD}=1 / 2 \times 50^{\circ}=25^{\circ}$
- ${ }^{3} \quad$ correct calculation to find $\angle \mathrm{CDA}$
- $3 \quad \angle \mathrm{CDA}=180^{\circ}-\left(60^{\circ}+25^{\circ}\right)=95\left(^{\circ}\right)$
(ii) For a correct final answer without working award $2 / 3$

Section B - Paper 2 - Marking Scheme

10

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
7	Ans: $126(\cdot 5)(\mathrm{cm})$ - ${ }^{1} \quad$ finding length of short side - ${ }^{2} \quad$ correct Pythagoras statement - ${ }^{3} \quad$ knowing to calculate square root - ${ }^{4}$ all calculations correct, within a right angled triangle	- ${ }^{1} \quad 230-190(=40)$ - ${ }^{2} \quad 120^{2}+40^{2}$ - ${ }^{3} \quad \sqrt{ } 16000$ - ${ }^{4} \quad 126(\cdot 5)(\mathrm{cm})$
NOTE: (i) $\begin{array}{ll}\text { Fi } \\ & 12 \\ & 11 \\ & 25 \\ & 22 \\ & 19 \\ & 14\end{array}$	 Answers With Working $5)$ $4 / 4$ $\left(120^{2}-40^{2}\right)$ $3 / 4$ $\left(230^{2}+120^{2}\right)$ $3 / 4$ $\left(190^{2}+120^{2}\right)$ $3 / 4$ $\left(230^{2}-120^{2}\right)$ $2 / 4$ $\left(190^{2}-120^{2}\right)$ $2 / 4$	Without Working $2 / 4$ $0 / 4$

