N4 RELATIONSHIPS 1.1

This resource is to support pupils in passing the appropriate National 4 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course. In addition the questions from Paper 1 (P1) should be completed without the use of a calculator and questions from Paper 2 (P2) permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 4 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment Standard	Sub skills	Section A Question Number
Relationships 1.1 Applying algebraic skills to linear equations	The sub-skills are: drawing a graph of a linear equation recognising a graph of a linear equation solving linear equations changing the subject of a formula	Q1 Q2 (Vertical) Q3 (Horizontal) Q4 Q5

FORMULAE LIST

Circumference of a circle:	$C=\pi \boldsymbol{d}$
Area of a circle:	$A=\pi r^{2}$
Curved surface area of a cylinder:	$A=2 \pi r \boldsymbol{h}$
Volume of a cylinder:	$\boldsymbol{V}=\pi r^{2} \boldsymbol{h}$
Volume of a triangular prism:	$\boldsymbol{V}=\boldsymbol{A} \boldsymbol{h}$

Theorem of Pythagoras:

Trigonometric ratios
in a right angled
triangle:

$$
\begin{aligned}
& \tan x^{\circ}=\frac{\text { opposite }}{\text { adjacent }} \\
& \sin x^{\circ}=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos x^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }}
\end{aligned}
$$

Gradient:

Gradient $=\frac{\text { vertical height }}{\text { horizontal distance }}$

Section A

Q
Q1
P2
6. (a) Complete the table below for $y=2 x-1$.

x	-1	1	3
y			

(b) Using the table in part (a), draw the graph of the line $y=2 x-1$ on the grid below.

Q2	State the equation of the line shown below:	1
Q3	State the equation of the line shown below:	1
$\begin{aligned} & \mathrm{Q} 4 \\ & \mathrm{P} 2 \end{aligned}$	(b) Solve algebraically $25=7 x+4$	2
Q5	Change the subject of the following equation to q . $P=3 q-5$	2

N4 - REL 1.1 - Remediation

Section A

MARKING

Section A - Marking Scheme

Q5 - 1 mark for $P+5$ seen or $\div 3$.

- 1 mark for correct answer:

$q=\frac{P+5}{3}$

OR

$$
q=(P+5) \div 3
$$

N4 - REL 1.1 - Remediation

Section B

Section B - Paper 1 - Questions

| Q | | Marks |
| :--- | :--- | :--- | :--- |
| 1 | $\mathrm{y}=4+\mathrm{w} \quad$ make w the subject of the formula | 1 |
| 2 | $\mathrm{P}=\mathrm{q}-\mathrm{r} \quad$ make r the subject of the formula | 1 |
| 3 | $\mathrm{~A}=\mathrm{LB} \quad$ make L the subject of the formula | 1 |
| 4 | $\mathrm{~K}=\frac{m}{v} \quad$ make m the subject of the formula | 1 |
| 5 | $\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~B} \quad$ make b the subject of the formula | 2 |
| 6 | $\mathrm{~A}=\frac{1}{2} \quad(\mathrm{a}+\mathrm{b}) \mathrm{h} \quad$ make b the subject of the formula | 3 |

Section B - Paper 2 - Questions

4. (a) Complete the table below for $y=2 x-3$.

x	-1	1	3
y			

(b) Using the table in part (a), draw the graph of the line $y=2 x-3$ on the grid below.

8 (b) Solve algebraically

$$
5 m-3=37+m
$$

8. (a) Solve algebraically

$$
7 t-3=t+45
$$

11. (a) On the grid below, plot the points $\mathrm{P}(-7,-3)$ and $\mathrm{Q}(5,6)$.

(b) Find the gradient of line PQ.

11

> 9. (a) Solve algebraically

$$
6(2 x-3)=42
$$

4. Solve algebraically the equation

$$
8 d+7=5 d+58
$$

N4-REL 1.1 - Remediation

Section B - Paper 1 - Marking Scheme

Q		Marks
1	$w=y-4$	1
2	$r=q-P$	1
3	$L=A \div B$	1
4	$\mathrm{m}=\mathrm{kn}$	1
5	$B=(P-2 L)) \div 2$ - 1 mark subtract 2 L seen or $\div 2$ - 1 mark correct answer	2
6	$b=2(A \div h)-a$ - 1 mark x 2 seen - 1 mark $\div \mathrm{h}$ seen - 1 mark correct answer	3

Section B - Paper 2 - Marking Scheme

11

$9 \quad$ (a)	Ans: \bullet^{1} \bullet^{2} ${ }^{3}$	$x=5$ correct multiplication of bracket correct gathering of number terms correct solution	- $1 \quad 12 x-18$ -2 $42+18=60$ - ${ }^{3} \quad x=5$
(b)	Ans: $\bullet{ }^{1}$ -2	$3(4 t+3 u)$ correct factor correct factorisation	$\begin{aligned} & \bullet \quad 3() \text { or }(4 t+3 u) \\ & \bullet \quad 3(4 t+3 u) \end{aligned}$

In part (a) for $x=5$ without algebraic working - award $0 / 3$

4		Ans: $\mathrm{d}=17$ - ${ }^{1} \quad$ start to collect like terms: 3d or 51 - ${ }^{2}$ collect like terms and equate: $3 \mathrm{~d}=51$ - ${ }^{3}$ solve for d: $d=17$	3	1. For answers without valid working award $1 / 3$ eg (i) d=17 without working (ii) $8 \times 17+7=5 \times 17+58 \rightarrow \mathrm{~d}=17$ 2. For the award of the $3^{\text {rd }}$ mark an answer of the form ' $\mathrm{d}=$ ' is required 3. Answers acceptable for partial credit (valid working must be shown) (a) $3 \mathrm{~d}=51 \rightarrow 17$ award $2 / 3 \checkmark \checkmark x$ (b) $3 \mathrm{~d}=65 \rightarrow \mathrm{~d}=21 \cdot 7$ or $21 \cdot 6(\ldots)$ award $2 / 3 \checkmark \times \checkmark$ (c) $13 \mathrm{~d}=51 \rightarrow \mathrm{~d}=3 \cdot 9(\ldots)$ award $2 / 3 \vee \times \checkmark$ (d) $13 \mathrm{~d}=65 \rightarrow \mathrm{~d}=5$ award $1 / 3 \times \times \checkmark$

