N4 EXPRESSIONS \& FORMULAE 1.3

This resource is to support pupils in passing the appropriate National 4 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course. In addition the questions from Paper 1 (P1) should be completed without the use of a calculator and questions from Paper 2 (P2) permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 4 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment Standard	$\underline{\text { Sub skills }}$	Section A - Question Number
 Formulae $\mathbf{1 . 3}$	The sub-skills are: constructing a frequency table with class intervals from raw data	Q1
Applying statistical skills to representing and analysing data and to probability	determining statistics of a data set interpreting calculated statistics	Q2
representing raw data in a pie chart	Q3	

FORMULAE LIST

Circumference of a circle:

$$
\begin{aligned}
& C=\pi d \\
& A=\pi r^{2} \\
& A=2 \pi r h \\
& V=\pi r^{2} h \\
& V=A h
\end{aligned}
$$

Area of a circle:
Curved surface area of a cylinder:
Volume of a cylinder:
Volume of a triangular prism:

Theorem of Pythagoras:

Trigonometric ratios
in a right angled
triangle:

$$
\begin{aligned}
& \tan x^{\circ}=\frac{\text { opposite }}{\text { adjacent }} \\
& \sin x^{\circ}=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos x^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }}
\end{aligned}
$$

Gradient:

Gradient $=\frac{\text { vertical height }}{\text { horizontal distance }}$

Section A

\begin{tabular}{|c|c|c|}
\hline Q \& \& Marks \\
\hline Q1 \& \begin{tabular}{l}
Tom measured the heights of pupils in his year at Primary. The results are in centimetres: \\
a) Display Tom's results in an appropriate frequency table. \\
b) What is the modal class interval of height in Tom's Year?
\end{tabular} \& \[
\begin{aligned}
\& 2 \\
\& 1
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& \text { Q2 } \\
\& \text { P2 }
\end{aligned}
\] \& \begin{tabular}{l}
1. Ten people were asked to guess the number of coffee beans in a jar. \\
Their guesses were: \\
\(\begin{array}{llllllllll}310 \& 260 \& 198 \& 250 \& 275 \& 300 \& 245 \& 225 \& 310 \& 200\end{array}\) \\
(a) What is the range of this data? \\
(b) Find the median.
\end{tabular} \& 1

2

\hline
\end{tabular}

$\begin{aligned} & \text { Q3 } \\ & \text { P2 } \end{aligned}$	8. John and Steven are playing snooker. They play eight games. Shown below are the number of points John scored in each game. $\begin{array}{llllllll} 21 & 39 & 22 & 53 & 45 & 19 & 43 & 46 \end{array}$ (a) Find the median. (b) Find the range. (c) The median number of points Steven scored is 23 and the range is 15 . Make two comments comparing the number of points scored by Steven and John.	2 1 2
$\begin{aligned} & \text { Q4 } \\ & \text { P2 } \end{aligned}$	Kirsty calculated how she spent her free time at the weekend: Construct a pie chart to illustrate how Kirsty spends her free time.	3
$\begin{aligned} & \text { Q5 } \\ & \text { P2 } \end{aligned}$	2. There are 2 yellow, 3 red, 1 blue and 4 orange cubes in a bag. (a) Jason takes a cube from the bag. What is the probability that it is orange? (b) The cube is replaced in the bag and 3 white cubes are added to the bag. What is the probability that the next cube taken from the bag is not red?	1

N4-EF 1.3-Remediation

Section A

MARKING

Section A - Marking Scheme

Q4		3
Q5		1

Section B

Section B - Paper 1 - Questions

Q		Marks
1	2. A box contains counters numbered from 1 to 14 . A counter is chosen at random. What is the probability that this counter has a number greater than 9 ?	2
2	8. Each pupil in a science class is growing a plant. A few weeks later the height of each plant is measured. The heights in centimetres are shown below. (a) Display these results in an ordered stem and leaf diagram. (b) Find the median height.	3 1

8. Four girls and two boys decide to organise a tennis tournament for themselves.

Each name is written on a plastic token and put in a bag.

(a) What is the probability that the first token drawn from the bag has a girl's name on it?
(b) The first token drawn from the bag has a girl's name on it.

This token is not returned to the bag.
What is the probability that the next token drawn from the bag has a boy's name on it?
6. Fifty students completed a fitness test known as a "Beep Test".

The fitness levels they achieved are shown in the frequency table below.

Fitness Level	Number of Students	Fitness Level \times Number of Students
5	4	20
6	5	30
7	9	63
8	21	
9	6	
10	5	Total $=$

(a) Complete the table above.
(b) Find the mean fitness level achieved by these students.

5
7. A bag contains 8 blue marbles, 5 red marbles and 2 yellow marbles.
(a) A marble is taken from the bag.

What is the probability that the marble is yellow?
(b) This marble is put back in the bag.

One red marble and one blue marble are then removed.
What is the probability that the next marble taken from the bag is blue?
2. A college class consists of 8 male and 12 female students. A student is chosen at random from the class. What is the probability that the student is male? Give your answer as a fraction in its simplest form.

7 6. Two hundred teenagers were asked how many songs they had downloaded during the previous week.

The frequency table below shows their responses.

Number of Songs	Frequency
5	38
6	72
7	53
8	30
9	7
	Total $=200$

(a) Write down the modal number of songs downloaded.
(b) Find the range of the number of songs downloaded.
6. (continued)
(c) Complete the table below and find the mean number of songs downloaded.

Number of Songs	Frequency	Number of Songs \times Frequency
5	38	190
6	72	432
7	53	371
8	30	
9	7	Total $=$

8 8. Thirty students were given homework.
The frequency table shows the length of time each student spent on the homework.

Time (minutes)	Frequency
5	1
10	6
15	11
20	7
25	5
	Total $=30$

(a) Write down the modal time spent on the homework.
(b) What is the probability that a student, picked at random, spent 20 minutes on the homework?
(c) Complete the table below and find the mean time spent on the homework.

Time (minutes)	Frequency	Time \times Frequency
5	1	5
10	6	60
15	11	165
20	7	
25	5	
	Total $=30$	Total $=$

9
10. Each card in a pile has a number printed on it.
(a) Seonaid selects these six cards from the pile.

The number on the last card is hidden.
6

The range of the numbers on the six cards is 8 .
Find the hidden number.
(b) Kirsty selects these six cards from the pile.

The number on the last card is hidden.
7

The mean of the numbers on the six cards is 5 .
Find the hidden number.

Section B - Paper 2 - Questions

Q		Marks
10	10. At the World Athletic Championships the mean time for the first semi-final of the 100 metres was 9.98 seconds. For the second semi-final the times, in seconds, were: $\begin{array}{llllllll}10.21 & 10.04 & 9.92 & 9.98 & 10.04 & 9.94 & 9.9 & 9.73 .\end{array}$ Was the mean time for the second semi-final better than the mean time for the first semi-final? Give a reason for your answer.	4

13. Helen has recorded the scores for her last eighteen games of golf. Her scores are shown below.

Score	Frequency	Score \times Frequency
69	3	
70	2	
71	4	
72	2	
73	1	
74	2	Total $=$
75	Total $=18$	

Complete the above table and find Helen's mean score per game.
Round your answer to 1 decimal place.
7. Last week Theresa asked 76 students to record how many hours they spent doing homework.
The results are shown below.

Homework hours	Frequency	Homework hours \times frequency
1	16	
2	12	
3	18	
4	11	
5	6	
6	5	
7	Total $=76$	Total $=$

Complete the above table and find the mean time spent on homework last week.
Round your answer to 1 decimal place.

13 10. The school's ECO group is collecting card and paper for recycling.

The percentage of each type of card and paper collected is shown in the pie chart.

The weight of white card collected is 90 kilograms.
Calculate the total weight of card and paper collected.

N4-EF 1.3-Remediation

Section B

MARKING

Section B - Paper 1 - Marking Scheme

3

8 (a)	Ans: $\frac{2}{3}$ - ${ }^{1} \quad$ Correctly finds probability (girl)	- $\frac{2}{3}$ or equivalent	1K
(b)	Ans: $\frac{2}{5}$ - ${ }^{1} \quad$ Correct denominator - ${ }^{2} \quad$ Correct numerator in a probability statement	$\begin{array}{ll} \bullet^{1} & 5 \\ \bullet^{2} & \frac{2}{5} \end{array}$	

Notes:
In parts (a) and (b)
(i) Accept variations in language e.g. 2:3;2 out of 3;2 to 3

In part (b)
(i) For a final answer of $\frac{2}{5}$ without working - award $2 / 2$
(ii) For an answer of 2:3 (following an incorrect 4:2 in part (a)) - award $2 / 2$

6

8

$$
3 / 3 \checkmark \checkmark \checkmark
$$

$$
495 \div 3 \times 10 \quad 2 / 3 \vee \vee x \quad 1 / 3 \vee x x
$$

$$
[=1650]
$$

9

10	a	Ans: 9 or -2 - find hidden number: 9 or -2	1	1. Answer may appear on hidden card
10	b	Ans: 4 - ${ }^{1}$ know that total $=$ mean $\times 6$: 5×6 - ${ }^{2}$ find hidden number: $30-(7+8+2+8+1)=4$	2	1. 4 without working award $2 / 2$ 2. (a) $26 \div 6=4(\cdot \ldots)=4$ award $0 / 2$ (b) $26 \div 5=5(\cdots)$ then an answer of 4 award $2 / 2$ 3. Alternative strategy: two trials where second is better than first: - ${ }^{2}$ find hidden number: 4 4. Answer may appear on hidden card

Section B - Paper 2 - Marking Scheme

Q		Marks
10	 NOTES: (i) The reason must include $0.01,9.97$ or 9.98 and comparative language. Eg the second semifinal was 9.97 s which is quicker. (ii) For the final mark a numerical comparison between mean and mode or mean and median may be acceptable.	4

11

NOTES

(i) Final answers
with working
4/4
without working 3/4
(ii) For an answer of $184 \cdot 1$ the $3^{\text {rd }}$ mark cannot be awarded.

12

4K

13

10	Ans: $\mathbf{6 0 0} \mathbf{(k g})$ - ${ }^{1} \quad$ valid strategy - ${ }^{2} \quad$ correct use of v - ${ }^{3} \quad$ all calculations include a divisi	strategy ect, must	3 (RE)	- $15 \%=90$ - ${ }^{2} \quad 1 \%=6$ or equivalent - $^{3} \quad(100 \%=) 600$
Notes: (i) (ii)	Alternative Strategy - $15 \%=90$ - ${ }^{2} 100 / 15=6 \cdot 66 \ldots$ - ${ }^{3} 90 \times 6 \cdot 66 \ldots=600$ Final Answers 600 $\begin{aligned} & 257(35 \%=90) \\ & 300(30 \%=90) \\ & 450(20 \%=90) \end{aligned}$	with working 3/3 2/3 2/3 $2 / 3$		without working 2/3 0/3 $0 / 3$ 0/3

