N4 EXPRESSIONS \& FORMULAE 1.2

This resource is to support pupils in passing the appropriate National 4 Assessment Standard. The questions and marking schemes used are from SQA past papers and as such test the topics in their entirety from grade A to C and may include other areas from the course. In addition the questions from Paper 1 (P1) should be completed without the use of a calculator and questions from Paper 2 (P2) permit the use of a calculator.

Each Assessment Standard is used to ensure pupils have the minimum competency on the specified sub-skills for the National 4 course. As such each Assessment Standard will test grade C work on that specific topic.

This resource is divided into two sections:

- Section A has an example on each sub skill for the relevant Assessment Standard and the marking scheme for these questions
- Section B has extra practice questions on this Assessment Standard and the marking scheme for these questions

Unit Assessment Standard	$\underline{\text { Sub skills }}$	Section A - Question Number
 Formulae $\mathbf{1 . 2}$	The sub-skills are: calculating the circumference of a circle Applying geometric skills to circumference, area and volume	calculating the area of a circle calculating the area of a parallelogram calculating the area of a kite calculating the area of a trapezium
investigating the surface of a prism	Q3	
	Q4	
calculating the volume of a prism		
using rotational symmetry		

FORMULAE LIST

Circumference of a circle:
Area of a circle:

$$
\begin{aligned}
& C=\pi d \\
& A=\pi r^{2} \\
& A=2 \pi r h \\
& V=\pi r^{2} h \\
& V=A h
\end{aligned}
$$

Ara of a circle:
Curved surface area of a cylinder:
Volume of a cylinder:
Volume of a triangular prism:

Theorem of Pythagoras:

Trigonometric ratios
in a right angled
triangle:

$$
\begin{aligned}
& \tan x^{\circ}=\frac{\text { opposite }}{\text { adjacent }} \\
& \sin x^{\circ}=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos x^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }}
\end{aligned}
$$

Gradient:

Gradient $=\frac{\text { vertical height }}{\text { horizontal distance }}$

Section A

Q3	Find the area of the shape ABCD.	2
Q4	Find the area of the shape $A B C D$.	2
Q5	Find the area of the shape ABCD.	3

$\begin{aligned} & \text { Q6 } \\ & \text { P2 } \end{aligned}$	9. A cylinder has: - radius $=7$ centimetres - height $=19$ centimetres. Calculate the curved surface area of the cylinder.	2
$\begin{aligned} & \text { Q7 } \\ & \text { P2 } \end{aligned}$	13. A plastic speed bump in the shape of a half cylinder is used to slow traffic outside a Primary School. The speed bump has radius of 10 centimetres and a length of 7 metres as shown in the diagram below. Calculate the volume of plastic used to make the speed bump.	3

8. Complete this shape so that it has half-turn symmetry about O .

N4-EF 1.2 -Remediation

Section A

MARKING

Section A - Marking Scheme

N4-EF 1.2-Remediation

N4-EF 1.2 -Remediation

Section B

N4-EF 1.2-Remediation

Section B - Paper 1 - Questions

4. Complete this shape so that it has quarter-turn symmetry about O .

							O								

3. $A B$ and $B C$ are two sides of a kite $A B C D$.

(a) Plot point D to complete kite ABCD .
(b) Reflect kite ABCD in the \boldsymbol{y}-axis.

3
4. Complete this design so that the dotted line is an axis of symmetry.

3. Complete the diagram so that the dotted line is an axis of symmetry.

Section B - Paper 2 - Questions

Q		Marks
5	15. In a drum kit, the diameter of the large drum is twice the diameter of the small drum. The small drum has a radius of 30 cm . Calculate the circumference of the large drum.	3
6	3. A semi-circular window in the school assembly hall is made from three identical panes of glass. During a recent storm one pane of glass was damaged. The semi-circle has a radius of 35 centimetres. Calculate the area of the damaged pane of glass.	3

9. Ian is making a sign for Capaldi's Ice Cream Parlour.
The sign will have two equal straight edges and a semi-circular edge.
Each straight edge is 2.25 metres long and the radius of the semi-circle is 0.9 metres.

Calculate the perimeter of the sign.

8 13. A wheelie bin is in the shape of a cuboid. The dimensions of the bin are:

- length 70 centimetres
- breadth 60 centimetres
- height 95 centimetres.

(a) Calculate the volume of the bin.
(b) The council is considering a new design of wheelie bin. The new bin will have the same volume as the old one. The base of the new bin is to be a square of side 55 centimetres. Calculate the height of the new wheelie bin.

12. The local council is installing a new children's playpark using a rubberised material.

The area of the rectangular playpark is 225 square metres.
The new playpark must have a depth of 12 centimetres.
The council has ordered 30 cubic metres of the rubberised material for the playpark.
Will this be enough?
Give a reason for your answer.
14. The diagram below shows the net of a cube.

The total surface area of the cube is 150 square centimetres.

Net of Cube

Calculate the length of the side of the cube.

9. A tennis court is 11 metres wide.

It has an area of 264 square metres.

Calculate the perimeter of the tennis court.
7. Bob is building a patio with a concrete base.

The base of the patio is 7 metres long, 3 metres wide and 10 centimetres deep.

Concrete costs $£ 60$ per cubic metre.
Find the total cost of the concrete for the base of Bob's patio.
15. Lizzie Douglas bends a length of wire into the shape of her initials.

The letter D is a semi-circle.
Calculate the total length of the wire.
Give your answer correct to the nearest centimetre.
16. A section of lawn edging consists of a rectangle with five equal semi-circles at the top.

Calculate the area of the section in square centimetres.
Give your answer correct to the nearest square centimetre.
6. This empty tank is to be filled with water.

The tank is a cuboid, 90 centimetres long, 60 centimetres wide and 50 centimetres high.
The water fills at a rate of 15 litres every minute. (1 litre $=1000 \mathrm{~cm}^{3}$)
How long will it take to fill the tank?
14. A badge showing a clown's head consists of a semi-circle and a triangle.

Calculate the area of the badge in square centimetres.
Give your answer correct to one decimal place.

N4-EF 1.2 -Remediation

Section B

MARKING

Section B - Paper 1 - Marking Scheme

3	 NOTES: (i) For a correct reflection of the drawing in a line other than the dotted line - within the grid - not wholly within the grid (ii) Where a candidate adds a line(s) to the design and reflects it, treat as working after a correct answer	3
4		2

Section B - Paper 2 - Marking Scheme

Q					Marks
5	Notes: (i) (ii)	$\|$Ans: $\mathbf{3 7 6 \cdot 8} \mathbf{(c m})$ \bullet^{1} know to find diameter of small drum \bullet^{2} know to find diameter of large drum \bullet^{3} correct circumference of of large drumFinal Answers with working $376 \cdot 8$ $3 / 3$ 377 $3 / 3$ $188 \cdot 5(3 \cdot 14 \times 60)$ $2 / 3$ $94 \cdot 2(3 \cdot 14 \times 30)$ $1 / 3$ candidates who calculate the area of the la	3 (RE) ge drun	- $\quad \mathrm{d}=2 \times 30(=60)$ - $\quad \mathrm{D}=2 \times 60(=120)$ $\bullet^{3} \quad(\mathrm{C}=3.14 \times 120=376 \cdot 8$ without working 2/3 2/3 $0 / 3$ $0 / 3$ can be awarded $1 / 3$ for evidence of $r=60$	3
6	3	Ans: $641\left(\mathrm{~cm}^{2}\right)$ - \quad calculate area of circle - ${ }^{2} \quad$ calculate area of semi-circle - ${ }^{3} \quad$ calculate area of $1 / 3$ of semi-circle	-	$\mathrm{Ac}=\pi \times 35^{2}=3846.5$ $\text { Asc }=1 / 2 \times 3846 \cdot 5=1923 \cdot 25$ $\mathrm{A}=1 / 3 \times 1923 \cdot 25=641\left(\mathrm{~cm}^{2}\right)$	3

11
$9 \quad$ Ans: $\quad 70(\mathrm{~m})$
-1 knowing to calculate length of $\quad \bullet \quad 264 \div 11(=24)$

- ${ }^{2} \quad$ knowing to calculate perimeter
- ${ }^{3} \quad$ correct calculations in a valid strategy
- ${ }^{2} \quad(2 \times 24)+(2 \times 11)$
- ${ }^{3} \quad 48+22=70(\mathrm{~m})$

NOTE:

(i) Final answers

70
35
with working
3/3
$2 / 3$
without working
2/3
$0 / 3$
2. BEWARE: mixed units in volume calculation and incorrect volume conversion factor
$7 \times 3 \times 10=(210 \div 100)=2 \cdot 1$
$2.1 \times 60=126 \quad$ award $2 / 3 \checkmark \times \checkmark$
3. Some common answers
[working must be shown]
(a) $12600[(7 \times 3 \times 10) \times 60]$
award $2 / 3 \checkmark \times \checkmark$
(b) $1260000[(70 \times 30 \times 10) \times 60]$
award $2 / 3 \checkmark \times \checkmark$
(c) $126000000[(700 \times 300 \times 10) \times 60]$
award $2 / 3 \vee \times \checkmark$
(d) $1260[(7 \times 3) \times 60$, area of patio]
award $1 / 3 \times \times \checkmark$
4. Special cases: $\mathrm{V}=\mathrm{r}+\mathrm{b}+\mathrm{h}$
[working must be shown]
(a) $606[10 \cdot 1 \times 60]=606$ award $2 / 3 \times \checkmark \checkmark$
(b) $1200[20 \times 60]=1200$ award $1 / 3 \times \times \checkmark$

15		Ans: $\mathbf{4 2} \mathrm{cm}$ - ${ }^{1}$ know how to calculate length of semi-circle: $1 / 2 \pi d$ or πr - ${ }^{2}$ substitute correct diameter into formula: $1 / 2 \times \pi \times 10$ or $\pi \times 5$ - ${ }^{3}$ know to add lengths of straight edges to previously calculated value: previously calculated value $+10+6+10$ -4 carry out all calculations correctly: $15 \cdot 7 \ldots+26=41 \cdot 7 \ldots$ (must include a circle calculation followed by an addition) - ${ }^{5}$ round to nearest whole number: 42

5

1. Correct answer without working award $0 / 5$
2. Where no formula is stated accept
(a) $1 / 2 \times \pi \times 10$ or $15 \cdot 7 \ldots$ as evidence of $1 / 2 \pi \mathrm{~d}$ being used
(b) $1 / 2 \times \pi \times 5^{2}$ or $39-2 \ldots$ as evidence of $1 / 2 \pi r^{2}$ being used
3. Some common answers (working must be shown)
(a) $32[1 / 2 \times \pi \times 10+16]$ award $4 / 5 \vee \vee \times \checkmark \checkmark$
(b) $57[\pi \times 10+26]$
award 4/5 $\times \checkmark \checkmark \checkmark \checkmark$
(c) $65\left[{ }^{1} / 2 \times \pi \times 5^{2}+26\right]$ award 4/5 $\times \checkmark \checkmark \checkmark \checkmark$
(d) $99\left[1 / 2 \times \pi \times 5^{2}+60\right]$ award $3 / 5 \times \sqrt{ } \times \sqrt{ } \checkmark$
(e) $183\left[{ }^{1} / 2 \times \pi \times 10^{2}+26\right]$ award $3 / 5 \times \times \vee \vee \vee$
(f) $34\left[\frac{1}{2} \times \pi \times 5+26\right]$ award $4 / 5 \vee \times \vee \vee \vee$
(g) $16[1 / 2 \times \pi \times 10]$ award $3 / 5 \checkmark \checkmark \times \times \checkmark$
(h) $31[\pi \times 10]$ award $2 / 5 \times \sqrt{ } \times \times \checkmark$
(i) $39\left[1 / 2 \times \pi \times 5^{2}\right]$ award $2 / 5 \times \sqrt{ } \times \times \checkmark$
(j) $39\left[\frac{1}{2} \times 5^{2}+26\right]$
award $2 / 5 \times \times \sqrt{ } \times \sqrt{ }$
(k) $79\left[\pi \times 5^{2}\right]$ award $2 / 5 \times \sqrt{ } \times \times \sqrt{ }$
4. (a) $5^{\text {th }}$ mark is only available where the answer to circle calculation requires rounding
(b) Where premature rounding leads to incorrect answer, a maximum of $4 / 5$ is available.
(14
5. Correct answer without working award 0/5
6. Some common answers (working must be shown)
(a) $8.3\left[\pi \times 1.4^{2}+1 / 2 \times 2.8 \times 1.5\right]$ award $4 / 5 \times \checkmark \checkmark \checkmark \checkmark$
(b) $7.3\left[1 / 2 \times \pi \times 1.4^{2}+2.8 \times 1.5\right]$ award $4 / 5 \checkmark \checkmark \times \checkmark \checkmark$
(c) $14.4\left[1 / 2 \times \pi \times 2.8^{2}+1 / 2 \times 2.8 \times 1 \cdot 5\right]$ award $4 / 5 \checkmark \times \checkmark \checkmark \checkmark$
(d) $6 \cdot 5[1 / 2 \times \pi \times 2.8+1 / 2 \times 2.8 \times 1 \cdot 5]$ award $4 / 5 \times \checkmark \checkmark \checkmark \checkmark$
(e) $4.3[1 / 2 \times \pi \times 1.4+1 / 2 \times 2.8 \times 1.5]$ award $3 / 5 \times \times \checkmark \checkmark \checkmark$
(f) $3 \cdot 1\left[1 / 2 \times \pi \times 1.4^{2}\right]$ award $3 / 5 \checkmark \checkmark \times \times \checkmark$
(g) $6 \cdot 2\left[\pi \times 1.4^{2}\right]$ award $2 / 5 \times \checkmark \times \times \checkmark$
(h) $4.4[1 / 2 \times \pi \times 2.8]$ award $2 / 5 \times \checkmark \times \times \checkmark$
(i) $8.8[\pi \times 2.8]$ award $2 / 5 \times \checkmark \times \times \checkmark$
(j) $2 \cdot 2[1 / 2 \times \pi \times 1.4]$ award $1 / 5 \times \times \times \times \checkmark$
7. (a) $5^{\text {th }}$ mark is only available where the final answer or answer to circle calculation requires rounding.
(b) Where premature rounding leads to incorrect answer, a maximum of $4 / 5$ is available
eg triangle $=(1 / 2 \times 1.4 \times 1.5) \times 2$

$$
\begin{aligned}
& =1.05 \times 2 \\
& =1.1 \times 2 \\
\text { total area } & =2.2+3.1=5.3
\end{aligned}
$$

substitute correct radius into formula: $\quad 1 / 2 \times \pi \times 1.4^{2}$

- ${ }^{3}$ know to add area of triangle to area of semi-circle
$1 / 2 \times \pi \times 1.4^{2}+1 / 2 \times 2.8 \times 1.5$
- ${ }^{4}$ carry out all calculations correctly: $3 \cdot 07 \ldots+2 \cdot 1=5 \cdot 17$.
(must include a circle calculation followed by an addition)
- 5 round to one decimal place: $5 \cdot 2$

