Higher Maths Self Evaluation

Applications

Applications: The Straight Line	\odot	⊡	<mark>()</mark>
Find the gradient of a line using:			
$\underline{y_2 - y_1}$			
• $x_2 - x_1$			
• $m = \tan \theta$			
Know the equation of a straight line of the form $y - b = m(x - a)$			
Know an equation of a straight line of the form $ax + by + c = 0$			
Know the features of gradients of:			
 parallel lines 			
 perpendicular lines 			
Determine the equation of a straight line given:			
 one point and the gradient 			
 two points 			
Find the distance between two points using the distance formula			
Recognise the term locus			
Find the equations of:			
• medians			
• altitudes			
 perpendicular bisector 			
Know the concurrency properties of:			
• medians			
• altitudes			
 perpendicular bisectors 			

Applications: Recurrence Relations	<u></u>	<mark>:</mark>	<mark>;;</mark>
Know the meanings of the terms: sequence, nth term, limit as n tends to infinity			
Use the notation U_n for the nth term of a sequence			
Define and interpret a recurrence relation of the form $(u_{n+1} = au_n + b)$			
Know the condition for the limit of a sequence (-1 < a < 1)			
Find and interpret the limit of a sequence from a recurrence relation			

Applications: Differentiation	\odot	<u>()</u>
Know that:		
• If $f(x) = x^{n}$ then $f'(x) = nx^{n-1}$		
• If $f(x) = g(x) + h(x)$ then $f'(x) = g'(x) + h'(x)$		
• If $f(x) = ax^{n}$ then $f'(x) = nax^{n-1}$		
Know how to use Leibniz notation to differentiate $\left(\frac{dy}{dx}\right)$		
Know that f'(x) is:		
 rate of change of f at x 		
 gradient of the tangent to the curve at x 		
Know how to find the equation of the tangent to a curve		
y = f(x) at x = a		
Know how to find the points on a graph where the gradient of a		
tangent has a particular value		
Know that when:		
• $f'(x) < 0$ the function is decreasing		
• $f'(x) > 0$ the function is increasing		
• $f'(x) = 0$ the function is stationary		
Know how to find the stationary points on a curve and determine		
their nature		
Know how to sketch curves by finding:		
 stationary points and their nature 		
 intersection with the axes 		
Know how to sketch the graphs of derived functions		
Know how to find the maximum and minimum values of a function on		
a given interval		
Know how to solve optimization problems using differential calculus		

Applications: Integration	<u></u>	<u>()</u>
Know the meaning of the terms integral, integrate, constant of		
integration, definite integral, limits of integration, indefinite integral and the area under a curve		
Know that if $f(x) = F'(x)$ then $\int f(x) dx = F(x) + C$		
Know that if $f(x) = F'(x)$ then $\int_a^b f(x) dx = F(b) - F(a)$		
Know how to integrate polynomial expressions, $f(x) = px^n$, for all		
rational n, except n= -1 and the sum or difference of such functions		
e.g integrate with respect to x, $x^3 + 1 + \frac{1}{x^2}$		
Know how to evaluate definite integrals		
Know how to determine the area between a curve $y = f(x)$, x-axis		
and the lines $x = a$ and $x = b$		
Know how to determine the area bounded between two curves		
Know how to solve differential equations of the form $\frac{dy}{dx} = f(x)$ for		
all suitable f(x)		

Applications: The Circle	\odot	<u></u>	<mark>()</mark>
Know that the equation of a circle centre (a,b) and radius r is			
$(x-a)^{2} + (y-b)^{2} = r^{2}$			
Know that the equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a			
circle with centre $(-g, -f)$ and radius $\sqrt{g^2 + f^2 - c}$ provided			
$g^2 + f^2 - c > 0$			
Know how to determine the equation of a circle			
Know how to find the points of intersection of a straight line with a			
circle			
Know how to determine whether a line is a tangent to the circle			
Know how to solve problems involving the intersection of a straight			
line with a circle, and a tangent to the circle			
Know how to determine whether two circles touch each other			

Applications: Quadratics	☺		<u>:</u>
Know how to complete the square for $ax^2 + bx + c \rightarrow a(x+b)^2 + c$			
Know that the roots of the quadratic equation, $ax^2 + bx + c = 0$, are			
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
Know how to solve quadratic inequalities (graphically)			
Know that the discriminant of $ax^2 + bx + c = 0$ is $b^2 - 4ac$			
Know how to use the discriminant to determine the nature of the roots of a quadratic equation			
Know how to use the discriminant to find the conditions that the roots of a quadratic equation are real, real and equal or real and unequal			
Know the conditions for tangency - the intersection of a straight line and a parabola			

Expressions and Functions

Expressions and Functions: Functions and Graphs	\odot	⊡	<u>(;)</u>
Know the meaning of the terms: domain and range of a function,			
inverse of a function and composite function.			
Know how to find $f(g(x))$ and $g(f(x))$ given $f(x)$ and $g(x)$			
Know the general features of the graphs of			
$f: x \rightarrow a^{x}$ and $f: x \rightarrow log_{a} x$			
Recognise the form of a function from its graph			
Given the graph of f(x), draw graphs of related functions for:			
y = f(x) + a			
y = f(x + a)			
y = -f(x)			
y = f(-x)			
y = kf(x)			
y = f(kx)			
Know the features of the graphs of			
$f: x \rightarrow sin(ax + b)$ and $f: x \rightarrow cos(ax + b)$ for suitable			
constants a and b			
Know the meaning of the terms amplitude and period			
Know that π radians=180°			
Know exact values (in degrees and radians)			
Know how to solve trigonometric equations algebraically			
Know how to find the inverse of a function			

Expressions and Functions: Trigonometric Equations	<mark>③</mark>	<mark>:</mark>	<u>()</u>
Solve trig equations of the form asinx + b = c, acosx + b = c			
Solve trig equations of the form $asin^2x = b$, $acos^2x = b$			
Solve trig equations of the form asinbx = c, acosbx = c			

Expressions & Functions: Vectors	<u></u>	<u></u>	$\overline{\odot}$
Know the meaning of the terms vector, magnitude (length),			
direction, position vector, unit vector, component and scalar			
product			
Know the properties of vector addition and multiplication of a			
vector by a scalar (scalar multiple)			
Know how to determine the distance between two points in 3			
dimensional space			
Know and apply the equality fact: $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} d \\ e \\ f \end{pmatrix} \implies a = d, b = e, c = f$			
Know and apply the fact that if ${f u}$ and ${f v}$ are vectors that can be			
represented as parallel lines then $\underline{\mathbf{u}}=\mathbf{k}\underline{\mathbf{v}}$ where k is a constant			
Know and apply the fact that if A, P and B are collinear points such			
that $\frac{AP}{PB} = \frac{m}{n}$ then $\overrightarrow{AP} = \frac{m}{n} \overrightarrow{PB}$			
Know how to determine whether three points are collinear			
Know and apply the basis vectors <u>i</u> , <u>j</u> , and <u>k</u>			
Know the scalar product facts			
$a.b = a b \cos\theta$			
$a.b = a_1 b_1 + a_2 b_2 + a_3 b_3$			
a.(b+c) = a.b + a.c			
Know how to determine if two vectors are perpendicular			
Know how to use the scalar product to find the angle between two			
vectors			

Expressions & Functions: Wave Function	\odot	<u>()</u>	\odot
Know how to express $a\cos\theta + b\sin\theta$ in the form			
$r\cos(\theta \pm \alpha) \text{ or } r\sin(\theta \pm \alpha)$			
Know how to solve equations of the form $a\cos\theta + b\sin\theta = c$ by first			
expressing in one of the forms above			
Know how to find the maximum and minimum values of the expressions			
of the form $acos\theta + bsin\theta$			
Know how to sketch graphs of the form $f(x) = a\cos\theta + b\sin\theta$			

Expressions & Functions: Logarithmic and Exponential Functions	\odot	<u></u>	<u>()</u>
Know that $a^y = x \Leftrightarrow \log_a x = y$ where $a > 1$ and $x > 0$			
Know the following laws of logarithms:			
$\log_a 1 = 0$, $\log_a a = 1$			
$\log_a bc = \log_a b + \log_a c$			
$\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c$			
$\log_a b^n = n \log_a b$			
Know how to simplify numerical expressions using the laws of			
logarithms			
Know how to solve simple logarithmic and exponential equations			
Know how to solve for, a and b, equations of the following form			
when given the corresponding values of x and y:			
$\log y = a \log x + b$			
$y = ax^{b}$			
$y = ab^{x}$			
Know how to use a straight line graph, involving logs, to confirm			
relationships of the form $y = ax^b$ and $y = ab^x$			
Know how draw graphs of logy against logx from experimental data			
and deduce the values of a and b such that $y = ab^x$			

Expressions and Functions: Addition Formulae	<mark>©</mark>	<mark>:</mark>	<mark>()</mark>
Know and apply the addition formulae			
$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$			
$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$			
Know how to solve problems involving the addition formulae			
Know how to solve equations involving the addition formulae			

Relationships and Calculus

Relationships and Calculus: Polynomials and Quadratics	<mark>©</mark>	<mark>:</mark>	<u>()</u>
Know how to use the remainder theorem to find the remainder of a			
polynomial expression when divided by $(ax-h)$			
Know how to find the roots of a polynomial equation			
Know how to use the factor theorem to determine factors of a			
polynomial equation			
Know how to prove that a polynomial equation has a root between			
two given values and find the root to a given number of decimal			
places			
Know how to determine the equation of a quadratic from given			
roots using $y = k(x-a)(x-b)$			

Relationships & Calculus: The double angle formulae	\odot	⊡	<mark>)</mark>
Recognise and be able to use the double angle formulae			
$\sin 2A = 2\sin A\cos A$			
$\cos 2A = \cos^{2}A - \sin^{2}A$, $\cos 2A = 1 - 2\sin^{2}A$, $\cos 2A = 2\cos^{2}A - 1$			
Solve Trig equations involving a combination of sin2x or cos2x			
terms using factorization.			

Relationships and Calculus: Further Calculus	<u></u>	<mark>:</mark>	<u>()</u>
Know how to apply the following facts for differentiating and			
integrating trigonometric functions			
$f(x) = \sin x \implies f'(x) = \cos x \text{ and } \int \cos x dx = \sin x + C$			
$f(x) = \cos x \implies f'(x) = -\sin x \text{ and } \int \sin x dx = -\cos x + C$			
Know and apply the fact that:			
$f(x) = g(h(x)) \implies f(x) = g'(h(x)) \times h'(x)$ (chain rule)			
Know how to integrate functions of the form $f(x) = (px + q)^n$ for all			
rational n except $n = -1$ and the sum or difference of such			
functions where p and q are constants			
Know how to integrate functions of the form $f(x) = p\cos(qx + r)$ and			
the sum or difference of such functions where p, q and r are			
constants			