Balerno Mathematics Course - Higher

1. Topic Skill	Subskill	Support notes (from SQA)
A1.1 Straight line: Applying algebraic skills to rectilinear shapes	- Finding the equation of a line parallel to and a line perpendicular to a given line	Emphasise the 'gradient properties' of $m_{1}=m_{2}$ and $m_{1} m_{2}=-1$ Use practical contexts for triangle work where possible. Emphasise differences in median, altitude etc. Perhaps investigate properties and intersections. Avoid approximating gradients to decimals. Knowledge of the basic properties of triangles and quadrilaterals would be useful. In order to 'show' collinearity, statement should include mention of 'common point', eg 'since $m_{A B}=m_{B C}$ and B is a common point.' Understanding of terms such as orthocentre, circumcentre and concurrency.
	- Using $m=\tan \theta$ to calculate a gradient or angle	
	Using properties of medians, altitudes and perpendicular bisectors in problems involving the equation of a line and intersection of lines	
	$>$ Determine whether or not two lines are perpendicular	

2. Topic Skill	Subskill	Support notes (from SQA)
R1.1 Polynomials: Solving Quadratics	Discriminant: - Given the nature of the roots of an equation, use the discriminant to find an unknown	
	Discriminant: Solve quadratic inequalities, $a x^{2}+b x+c \geq 0$ or (≤ 0)	
	Intersection: Finding the coordinates of the point(s) of intersection of a straight line and a curve or of two curves	As far as possible, solutions of algebraic equations should be linked to a graph of function(s), with learners encouraged to make such connections. (Use of graphic calculators/refer to diagram in question/ sketch diagrams to check solutions.)

3. Topic Skill	Subskill	Support notes (from SQA)
A1.3 Recurrence Relations: Modelling situations using sequences	- Determining a recurrence relation from given information and using it to calculate a required term	Where possible, use examples from real-life situations such as where concentrations of chemicals/medicines are important.
	- Finding and interpreting the limit of a sequence, where it exists	

| Topic
 Skill | Subskill | Support notes (from SQA) |
| :--- | :--- | :--- | :--- |

| Topic
 5. | Subskill |
| :--- | :--- | :--- |

	Solving polynomial equations: Cubic or quartic with non-unitary coefficient of the highest power	Emphasise meaning of solving $f(x)=g(x)$. Learners should encounter the Remainder Theorem and how this leads to the fact that for a polynomial equation, $f(x)=0$, if $(x-h)$ is a factor of $f(x), h$ is a root of the equation and vice versa. Learners' communication should include a statement such as 'since $f(h)=0$ ' or 'since remainder is 0 '. Learners should also experience divisors/factors of the form $(a x-b)$.

6. Topic Skill	Subskill	Support notes (from SQA)
EF1. 1 Logarithms: Manipulating algebraic expressions	- Simplifying an expression using the laws of logarithms and exponents	Link logarithmic scale to science applications, eg decibel scale for sound, Richter scale of earthquake magnitude, astronomical scale of stellar brightness, acidity and pH in chemistry and biology. Note link between scientific notation and logs to base 10.
	- Solving logarithmic and exponential equations	
	- Using the laws of logarithms and exponents	
	Solve for a and b equations of the following forms, given two pairs of corresponding values of x and y : $\begin{aligned} & \log y=b \log x+\log a, \quad y=a x^{b} \text { and, } \\ & \log y=x \log b+\log a, \quad y=a b^{x} \end{aligned}$	Real-life contexts involving logarithmic and exponential characteristics, eg rate of growth of bacteria, calculations of money earned at various interest rates over time, decay rates of radioactive materials.
	Using a straight line graph to confirm relationships in the form $y=a x^{b}$ and $y=a b^{x}$	
	Model mathematically situations involving the logarithmic or exponential function	

Topic Skill	Subskill	Support notes (from SQA)

Topic Skill	Subskill	Support notes (from SQA)
EF1.2 Trigonometry: Manipulating trigonometric expressions	Application of: - The addition or double angle formulae	Learners can be shown how formulae for $\cos (\alpha+\beta)$ and $\sin (\alpha+\beta)$ can be used to prove formulae for $\sin 2 \alpha$, $\begin{aligned} & \cos 2 \alpha \\ & \cos 2 \square, \tan (\alpha+\beta) \end{aligned}$ Emphasise the distinction between $\sin x^{\circ}$ and $\sin x$ (degrees and radians). Learners should be given practice in applying the standard formulae, eg expand $\sin 3 x$ or $\cos 4 x$. Learners should be exposed to geometric problems which require the use of addition or double angle formulae. Example of use in science: a train of moving water waves of wavelength λ has a profile $y=\sin \left\{2 \pi\left[\frac{t}{T}-\frac{x}{\lambda}\right]\right\}$
	Application of: - Trigonometric identities	
	Convert $a \cos x+b \sin x$ to $k \cos (x \pm \alpha)$ or $k \sin (x \pm \alpha)$, $k>0$ - α in $1^{\text {st }}$ quadrant	
	```Convert }a\operatorname{cos}x+b\operatorname{sin}x\mathrm{ to }k\operatorname{cos}(x\pm\alpha)\mathrm{ or }k\operatorname{sin}(x\pm\alpha)\mathrm{ , k>0 \alpha in any quadrant```	


Topic Skill	Subskill	Support notes (from SQA)
RC1. 2   Trigonometry: Solving trigonometric expressions	- Solve trigonometric equations in degrees, involving trigonometric formulae, in a given interval   Solving trigonometric equations in degrees or radians, including those involving the wave function or trigonometric formulae or identities, in a given interval	Link to trigonometry of Expressions and Functions Unit. Real-life contexts should be used whenever possible. Solution of trigonometric equations could be introduced graphically.   Recognise when a solution should be given in radians (eg $0 \leq x \leq \pi$ ). In the absence of a degree symbol, radians should be used.   A possible application is the refraction of a thin light beam passing from air into glass. Its direction of travel is bent towards the line normal to the surface, according to Snell's law.


Topic Skill	Subskill	Support notes (from SQA)
A1.2   Circle: Applying algebraic skills to circles	- Determining and using the equation of a circle	Link to work on discriminant (one point of contact). Develop equation of circle (centre the origin) from Pythagoras, and extend this to circle with centre (a,b) or relate to transformations.   Demonstrate application of discriminant.   Learners made aware of different ways in which more than one circle can be positioned, eg intersecting at one/two/no points, sharing same centre (concentric), one circle inside another.   Practice in applying knowledge of geometric properties of circles in finding related points (eg stepping out method). Solutions should not be obtained from scale drawings.
	- Using properties of tangency in the solution of a problem	
	Determining the intersection of circles or a line and a circle	


Topic   Skill	Subskill	Support notes (from SQA)		
RC1.3, RC1.4, A1.4   Calculus:   Differentiating functions	Differentiating an algebraic function which is, or can be   simplified to, an expression in powers of $x$			
	Differentiating $k \sin x, k \cos x$	Examples from science using the terms associated with   rates of change, eg acceleration, velocity.		
	rDifferentiating a composite function using the chain   rule			
RC1.3, RC1.4, A1.4   Calculus:	Determining the equation of a tangent to a curve at a			
given point by differentiation				Learners should know that the gradient of a curve at a
:---				
point is defined to be the gradient of the tangent to the				
curve at that point.				

## Using differentiation to

 investigate the nature and properties of functions> Determine where a function is strictly increasing/decreasing
$>$ Sketching the graph of an algebraic function by determining stationary points and their nature as well as intersections with the axes and behaviour of $f(x)$ for large positive and negative values of $x$

Learners should know when a function is either strictly increasing, decreasing or has a stationary value, and the conditions for these.

The second derivative or a detailed nature table can be used. Stationary points should include horizontal points of inflexion.

Topic Skill

RC1.3, RC1.4, A1.4

## Calculus:

Integrating functions

## RC1.3, RC1.4, A1.4

## Calculus:

Using integration to calculate definite integrals

## Subskill

- Integrating an algebraic function which is, or can be simplified to, an expression in powers of $x$
- Integrating functions of the form $f(x)=(x+q)^{n}$ where $n \neq-1$
- Integrating functions of the form $f(x)=p \cos x$ and $f(x)=p \sin x$
$>$ Integrating functions of the form $f(x)=(p x+q)^{n}$ where $n \neq-1$
$>$ Integrating functions of the form $f(x)=p \cos (q x+r)$ and $f(x)=p \sin (q x+r)$
> Solving differentiation equations of the form $\frac{d y}{d x}=f(x)$
- Calculating definite integrals of polynomial functions with integer limits
> Calculating definite integrals of functions with limits that are integers, radians, surds or fractions

Know the meaning of the terms integral, integrate, constant of integration, definite integral, limits of integration, indefinite integral, area under a curve.
Know that if $f(x)=F^{\prime}(x)$ then $\int_{a}^{b} f(x) d x=F(b)-F(a)$ and
$\int f(x) d x=F(x)+C$ where C is the constant of integration.
Could be introduced by anti-differentiation.
Learners should experience integration of $\cos ^{2} x$ and $\sin ^{2} x$
using $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$

Extend to area between the curve between the limits

Topic   Skill	Subskill	Support notes (from SQA)


Topic Skill	Subskill	Support notes (from SQA)
RC1.3, RC1.4, A1.4   Calculus:   Applying integral calculus	- Finding the area between a curve and the $x$-axis.   - Finding the area between a straight line and a curve or two curves	Develop from Relationships and Calculus Unit. Use of graphical calculators for an investigative approach. Area between curves by subtraction of individual areas use of diagrams, graphing packages.   Reducing area to be determined to smaller components in order to estimate segment of area between curve and $x$


		axis. Use of area formulae (triangle/rectangle) in solving such problems.
	Determine and use a function from a given rate of change and initial conditions	A practical application of the integral of $\frac{1}{x^{2}}$ is to calculate the energy required to lift an object from the earth's surface into space. The work energy required is $E=\int F d r$ where F is the force due to the earth's gravity and $r$ is the distance from the centre of the earth. For a 1 kg object   $E=-\int\left(\frac{G M}{r^{2}}\right) d r$ where M is the mass of the earth and G is the universal gravitational constant. $G M=4.0 \times 10^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2}$. The integration extends from $r=6.4 \times 10^{6} \mathrm{~m}$ (the radius of the earth) to infinity.

